
Electronic Report

52 Bank Parade Burnley BB11 1TS Phone 01282 414649 / 458410 Our Ref: New Wellington Street/BB2 4PJ/2017

Date: 19 January 2018

Michael Harrison Lea Hough Chartered Engineer Blakewater House Phoenix Business Park Blakewater Road Blackburn BB1 5RW

Tel: 01254 260196

Email: michael.harrison@leahough.co.uk

HERON FOODS, NEW WELLINGTON STREET, BLACKBURN, BB2 4PJ

We enclose an Intrusive Report, which is in many ways an interim. Further tests are required as follows:

Landfill Gas

Currently gas levels are low but we are required to test for 3 months.

Asbestos Percentage

Asbestos has been found, further test are underway to check on the percentage in the soil. This will help to determine the risk from asbestos and to see if the soil would be classed as hazardous waste.

Concerning asbestos, if the landscaped margins were removed, this would ease the asbestos problem.

Leachate Tests

Further test are underway to check that soil contamination will not leach into the culvert. Your culvert survey will be useful to us.

Once the culvert has been accurately positioned we could carry out an extra borehole to check ground by it (likely to be deeper made ground).

Yours faithfully on behalf of Worms Eye Ltd

David Lord

BSc (Hons)

FGS, MIEnvSc, AIEMA

Our Ref: New Wellington Street/BB2 4PJ/2017

Date: 22 January 2018

Michael Harrison Lea Hough Chartered Engineer Blakewater House Phoenix Business Park Blakewater Road Blackburn BB1 5RW

Tel: 01254 260196

Email: michael.harrison@leahough.co.uk

HERON FOODS, NEW WELLINGTON STREET, BLACKBURN, BB2 4PJ
INTRUSIVE REPORT

INTRODUCTION

A commercial development is proposed. Following a Preliminary Risk Assessment (PRA 10/11/17) instructions were to carry out boreholes, tests and landfill gas testing to investigate potential geotechnical, contamination and landfill gas issues highlighted in the PRA.

SITE DESCRIPTION

The site is an approximately rectangular shape plot, about 60 by 50 metres located to the southwest of New Wellington Street in Blackburn and at OS Grid Reference 366978, 426315. The site comprised an unused plot with a hard surface, mainly concrete. Along the north boundary there was a bund, where household fly tipping was seen. Along the west and north of the site boundary was rubble that appeared to be fly tipped.

Suspected asbestos cement fragments were seen among the rubble on the north of the site.

The west boundary is a wall holding up Queen's Terrace (a highway). The wall retaining about 4 metres height in the southwest corner and 0.5 metres in the northwest corner.

Just beyond the northeast corner of the site was a small electrical sub-station off-site. To the south was a hard surfaced car/lorry park, with the canal at a higher level a further 60 metres to the southwest.

The area slopes down to the northeast.

PROPOSED DEVELOPMENT

It is proposed to build a food store about 20 x 30 metres towards the southwest of the site. To the northwest will be an associated carpark and small landscaped areas. The east of the site will be a new road, providing access to the adjacent site to the south.

PRELIMINARY RISK ASSESSMENT

Worms Eye carried out a PRA dated 10/11/17, the salient points were:

Contamination

The site was previously occupied by a church (west), houses (northeast) and engineering works (southeast/east). A filled stream valley, running southeast to northwest, is also suspected. Whilst the church and houses are not expected to be a source of contaminants it is likely that made ground (especially demolition rubble) will be present in those areas, especially if they had basements, and in the suspected filled valley

Whilst made ground and/or demolition rubble is expected across the site, and can contain raised levels of contaminants, the levels are not expected to exceed commercial thresholds.

The former engineering works on the east/southeast is a possible source of higher levels of contaminants which may exceed commercial thresholds. Although there have been several industrial sites in the surrounding area the closest to the site were a coal yard and cotton mill. These would not be different to, or at higher levels than, those expected on-site.

The proposed development will be a food store, with carpark and small landscaping areas. Potential pollutant linkages are considered to be:

- Direct contact with soil.
- Ingestion of soil.
- Inhalation and ingestion of dust.
- Sulphate attack on buried concrete.
- Inhalation of vapours.
- Contaminants entering drinking water pipes.

Contaminants are not expected to exceed commercial thresholds over a wide area. Some hot-spots may occur and only a low risk to end-users is anticipated.

PRA Re-Cap Continued

Controlled Waters

There is an underlying Secondary A aquifer beneath low permeability clay.

The River Darwen is 540 metres northeast.

There is a culverted water course running southeast – northwest under the site (see United Utility plan) which most probably discharges to the River Darwen. This culvert appears to take flood overflow from the canal.

Although the canal is 61 metres southwest, this is above the level of the site and therefore not a receptor.

The small landscaped areas will allow very limited opportunity for rainwater to pass through the surface soils and leach out contaminants that may migrate to the underlying aquifer. However, the almost fully hard surfaced development, and underlying clay, will impede the migration of water and only a low risk is expected to groundwater.

A low risk to controlled water is expected and no further action is considered necessary at this stage. This may need to be reviewed following the soil tests.

Landfill Gas/Ground Gas

There are no landfill sites within 250 metres.

There are several filled features within 250 metres of the site and likely made ground on-site. These are potential sources of ground gases, which could migrate to and present a risk to the development. Taking into account their size and age of filling only a low gas generation potential s thought likely.

Bearing in mind the size of the filled areas, distance from the site, and underlying geology, it is considered that there is likely to be a low risk to the development.

A gas testing programme is required.

Radon

Radon protection measures are not required.

PRA Re-Cap Continued

Coal Mining

A geological fault means the site is probably clear of any high risk zones. If the fault creeps onto the southwest corner, here the shallow seams are sufficiently deep not to pose a significant risk, and no further action is required.

Flooding

The EA maps indicate that the area is clear of flooding from rivers and no further action is required.

The maps suggest that the site could be subject to surface water flooding. These maps are fairly crude and it is beyond the scope of this report to provide a comprehensive flood risk assessment.

There is a culvert present under the site.

Foundations

It is expected that made ground will be present, with underlying clay. This can provide variable conditions for foundations and a range of options may need to be considered, including reinforced concrete raft to a piled foundation.

If foundations are to be on clay the shrinkage potential of the clay needs to be determined, to ensure foundations are below the potential effects of tree root shrinkage.

Industry Profile

The site was formerly occupied by a church, houses and engineers, made ground is also expected.

Industry	Possible Contaminants
Potential Contaminants	Metals: e.g. copper, zinc, chromium, nickel, lead, cadmium, arsenic, Inorganic compounds: cyanide, sulphates Phenols VOCs Mineral oils, fuel oils (TPHs) Acids Asbestos PCBs General hydrocarbons (PAHs)

PRA Re-Cap Continued

Pollutant Linkages

The potential pollutant linkages revealed by the PRA as requiring further investigation were:

Source	Receptors	Pathway	Potential/Likely Pollutant Linkage
Asbestos	Construction workers	Inhalation	Yes
Aspesios	End-users	Inhalation	Yes
	Construction workers	Short-term direct contact, inhalation of dust, ingestion	Yes
Inorganic	End-users	Direct contact, ingestion, inhalation of dust	Yes
contaminants	Groundwater	Leaching towards	No
	River/stream	Leaching towards	No
Sulphate	Building fabric	Concrete directly in contact with soil	Yes
	Construction workers	Short-term direct contact, inhalation of dust, ingestion	Yes
	End-users	Direct contact, ingestion, inhalation of dust	Yes
Hydrocarbons	Service pipes	Seeping into drinking water pipes	Yes
	Groundwater	Migrating towards	Unlikely
	River/stream	Migrating/leaching towards	No
Hydrocarbon	Construction workers	Short-term inhalation	Unlikely
vapours	End-users	Inhalation of vapours indoors and outdoors	Unlikely
Landfill gas	End-users - in buildings	Seeping into buildings, explosion, asphyxiation	Yes
Radon	End-users - in buildings	Seeping into buildings	No

End of PRA Re-Cap

PRA UPDATE - HISTORICAL BOREHOLES

Various historical boreholes were drilled in the surrounding area (copyright NERC/BGS) and they showed the following:

Location	Depth To Rockhead (m)		
200 – 300 m east and northeast	>22		
150 metres south	>9		
250 metres north and northwest	>10		

Furthermore, the geological map shows no drift free areas within a kilometre of the site. All this suggesting rockhead is fairly deep.

The boreholes generally showed glacial clay improving in strength with depth, with gravel and cobble bands.

LEGAL/COPYRIGHT

Material included in this report from Ordnance Survey (Licence No. AL100031635), Landmark, Environment Agency, the Coal Authority and others (if any) may be copyright and the usual restrictions apply. This report can only be relied upon if the invoice has been paid promptly and in full. This report may be signed by an individual, but only on behalf of Worms Eye Limited.

GROUND INVESTIGATIONS

A series of eight boreholes and three dynamic probes were drilled around the site. Details are given on the location plan, borehole logs and dynamic probe logs enclosed with this report.

The ground levels shown on the borehole logs are interoperated from the client's topographic survey and are thought probably to Ordnance Datum.

The following table approximates to a section through the proposed building looking north:

	Southwest	Southwest					
Findings	ВН3	BH1/PrA	BH2/PrB	BH4			
Made ground	0 – 1.9*	0 – 1.6	0 – 1.8	0 – 2.4			
Clay (very soft)		1.6 – 3.0					
Clay (medium strength)		3.0 – 3.8	1.8 – 4.0	2. – 4.0+			
Clay (high strength)		3.8 – 5.0+					
Probe (high strength)		3.8 – 5.5	3.0 – 10+				
Water	Dry	1.4	2.2	1.9			

^{*} Refusal

Boreholes 5, 6, 7 & 8 were drilled to one metre deep, primarily to collect samples for contamination testing.

CONTAMINATION TESTING

Eighteen samples (eight shallow and ten deeper) were tested for a range of contaminants indicated by the PRA. The results are included in table form with this report. Abbreviations and acronyms for chemical compounds are given after the appendix list.

CONTAMINATION COMPARISONS - INITIAL SCREENING

The maximum contamination values have been compared with commercial soil guideline values provided by CLEA. Where these are not available, values are based on the CLEA derived LQM/CIEH Generic Assessment Criteria. In accordance with guidance provided by the AGS, threshold values from other sources have been used for screening purposes. This information has been brought together on the Comparison Table included with this report.

Asbestos

Chrysotile loose fibres were found in BH3, BH5 and BH6 at 0.3 - 0.4 metres, with amosite loose fibres at 0.3 metres in BH3.

In eight tests of madeground three showed asbestos.

Detailed tests are underway to determine the percentage of asbestos.

Inorganics (metals etc.)

Levels of inorganic contaminants are low and below commercial thresholds.

Sulphate

Levels of water soluble sulphates are low and below the BRE action level for buried concrete.

Hydrocarbons

Levels of phenols, TPHs and PAHs are all below their respective commercial thresholds.

Drinking Water Pipes

Comparing test results against trigger levels for drinking water pipes shows levels of contaminants are below the threshold.

LANDFILL GAS TESTING

Boreholes 1, 2 and 3 were converted to gas monitoring points as follows:

	BH1	BH2	BH3
	(m)	(m)	(m)
Plain pipe	0 - 1.0	0 - 1.0	0 - 1.0
Base of slotted pipe	3.6	3.8	1.8
Response zone	1 - 3.6	1 - 3.8	1 - 1.8
	(2.6m)	(2.8m)	(0.8m)

To date six landfill gas tests have been carried out on two occasions. Worst-case values are:

Gas	Site Value	Limit of detection
Methane %	0.0	0.1
Oxygen %	14.8	0.1
Carbon dioxide %	2.4	0.1
Flow rate I/hr	0.0	0.1

Assessing Risks

The method recommended in CIRIA Report **C665 (2007)** "Assessing risks posed by hazardous ground gases to building, Table 8.7", is used to classify the site.

The gas screening values (GSV) are calculated from the worst-case values as follows:

	Site Value	Characte Situatio	Characteristic Situation 2		
	Site value	Threshold	Pass /Fail	Threshold	Pass /Fail
Outflow (I/hr)	<0.1	-	-	70	Р
Methane - Total (%)	<0.1	1	Р	-	Р
Methane GSV (I/hr)	<0.001	0.07	Р	0.7	Р
CO ₂ -Total (%)	2.4	5	Р	-	Р
CO ₂ GSV (I/hr)	<0.0024	0.07	Р	0.7	Р

Gas screening value = gas concentration (%) multiplied by outflow (I/hr)

These conditions currently classify the site Situation 1.

DISCUSSION

Contamination

Contamination tests show levels of contaminants (other than asbestos) to be below commercial thresholds. There are no risks from heavy metals, inorganic contaminants or hydrocarbons.

Loose asbestos fibres were seen in BHs 3, 5 and 6 at 0.3 - 0.4 metres. BHs 5 and 6 are located in a proposed landscape area and the asbestos fibres pose a risk to end-users. The three boreholes also cover a wide area of the site and fibres may be present elsewhere. With this in mind it would be sensible to carry out remediation to the whole landscape areas.

The loose asbestos fibres are also considered to pose a risk to construction workers.

Water Soluble Sulphate levels are low and sulphate resistant concrete is not required.

The tests results suggest, subject to Water Authority approval, the site is suitable for normal PE water pipes. However, bearing in mind the presence of asbestos fibres, these should be laid in trenches with clean imported, backfill material

Levels of volatile hydrocarbons are below the thresholds and there is no risk from hydrocarbon vapours.

Controlled Waters

Regarding leaching to the aquifer.

- The levels of contaminants are not very high.
- Made ground in exposed areas will be taken away or covered, removing or considerably reducing the opportunity for leaching.
- Clay underlying the site will be an aquitard.
- The development is mostly hard surfaced; this will minimise any water soaking into the ground and leaching out contaminants.

Bearing in mind all of the above factors, it is considered that risks to groundwater are very low.

Regarding surface water, the canal is above the level of the site and the nearest river over 500 metres away, these are not at risk. However, a culvert passes beneath the site and its condition is not known. The risk from this will depend on its construction and quality. A survey is recommended.

Contamination leachate tests are underway to further check risks.

Landfill Gas/Ground Gas

The tests currently show a low gas levels, corresponding to a characteristic Situation 1.

Ground Conditions

Up to mid Victorian times there was a stream (presumably in a valley) running southeast to northwest across the site. Borehole 4 was close to that route and this may be the cause of the slightly deeper made ground.

BH3 in the southwest corner refused at 1.9 metres still in madeground. It could have struck a foundation of the Methodist Church demolished circa 1950s.

The ground conditions are variable, mainly granular madeground 1.6 - 2.4 metres deep, overlying reasonable gravelly clay, proved to 4 - 5 metres deep. The exception to this was BH1 where very soft clay was seen below the madeground from 1.6 to 3.0 metres deep.

Dynamic probes went deeper and showed higher strength ground, proved to 10 metres deep.

Probe A refused at 5.5 metres in natural ground, but this is thought to be a boulder rather than rock.

Historical boreholes suggest that rock is more than 10 – 20 metres deep.

CONCEPTUAL MODEL

Contamination issues should be considered using the source-path-receptor concept assisted by the conceptual model diagram included at the end of the report.

Source	Receptors	Pathway	Complete Pollutant Linkage
Asbestos	Construction workers	Inhalation	Yes *
(BH3, BH5, BH6)	End-users	Inhalation	Yes
	Construction workers	Short-term direct contact, inhalation of dust, ingestion	Yes
Inorganic contaminants	End-users	Direct contact, ingestion, inhalation of dust	No
(below threshold)	Groundwater	Leaching towards	No
	Culvert	Leaching towards	Unlikely
Sulphate (low)	Building fabric Concrete directly in contact with soil		No
	Construction workers	Short-term direct contact, inhalation of dust, ingestion	Yes
Hydrocarbons	End-users	Direct contact, ingestion, inhalation of dust	No
(below threshold)	Service pipes	Seeping into drinking water pipes	
	Groundwater	r Migrating towards	
	Culvert	Migrating/leaching towards	Unlikely *
Hydrocarbon	Construction workers	Short-term inhalation	No
vapours (low)	End-users	Inhalation of vapours indoors and outdoors	No
Landfill gas	End-users - in buildings	Seeping into buildings, explosion, asphyxiation	Unlikely *
Radon	End-users - in buildings	Seeping into buildings	No

^{*} await further tests

BREAKING PATHWAYS

Construction Workers

Normal precautions for an urban renewal type project are required. These would include the use of gloves and the provision of washing facilities to avoid ingestion of contaminants.

Landscaped Areas

Contamination by asbestos was found to be present in the four of the eight tests of madeground, further testing is underway. One method would be to remove the source by excavating the contaminated material and disposing off site. This would require:

- Excavate made ground to 0.6 metres in all landscaped areas.
- Backfill with imported material, tested to confirm its suitability for use on-site.

Another method is to use a cover layer. A traditional cover layer over the whole site may be uneconomical and unfeasible. However, the site is predominantly hard-surfaced and an alternative would be to extend the hardcover over the landscaped areas and construct raised beds for landscaping.

Service Pipes

To avoid risks to maintenance workers from asbestos, water pipes to be laid in trenches with a clean, imported backfill cover.

OPINION

Watercourse/Culvert

There is a culvert shown on the United Utilities plan which runs close to the northeast corner of the building. This needs to be accurately surveyed and its condition noted. It may need to be diverted.

Contaminated Soils

Test results show loose asbestos fibres in three locations these posing a risk to end-users from the small landscaped areas and construction workers.

Construction Workers

Appropriate health and safety precaution are required for construction workers and a detailed management plan to prevent risk to off-site properties and local residents from loose asbestos fibres.

Contamination tests show levels below thresholds appropriate for the development. It is considered these suggest no risk to end-users and no further action is required.

Sulphate resistant concrete is not required.

There are no risks from hydrocarbon vapours.

Subject to Water Authority approved the site is suitable for the use of normal PE water pipes, to be laid in trenches with clean, imported, backfill.

12

Controlled Waters

Risks to groundwater are considered very low and no further action is required.

There is a potential risk to the culvert. Leachate tests are underway and a survey of the culvert is

recommended

Gas Testing

Testing is in the early stages and shows low gas levels.

Testing continues and the results will be forwarded in a supplementary report. This may show a

change in the current situation, and may worsen as further tests are carried out.

Foundations

The site generally comprised 1.6 – 2.7 metres of mainly granular made ground and should be suitable

for a reinforced concrete raft construction, on a rolled compacted formation and hardcore, using an

allowable bearing capacity of 80kn/m².

However, in the northwest corner there is an area of very low strength clay under the made ground.

Options here could be to excavate out the soft clay and replace with rolled and compacted hardcore.

Other possibilities may be to reduce the allowable bearing capacity to that area and incorporate

'Tensar' type geogrid within the hardcore layer.

Yours faithfully

on behalf of Worms Eye Ltd

David Lord

BSc (Hons)

FGS, MIEnvSc, AIEMA

HERON FOODS, NEW WELLINGTON STREET, BLACKBURN, BB2 4PJ

<u>List of Appendices – Intrusive Report</u>

List of Acronyms

Existing Site Plan

Proposed Site Plan Showing Borehole Locations

Topographic Plan Showing Outline Proposals

United Utilities Sewer/Culvert Plan

Borehole Logs

Dynamic Probe Logs

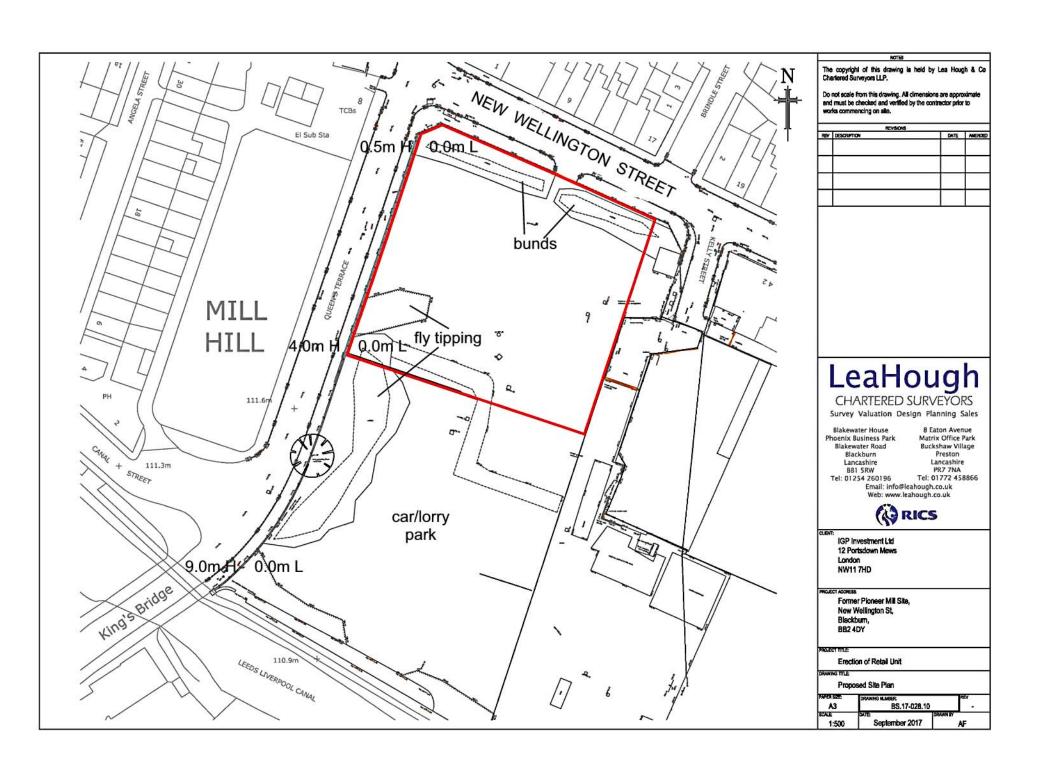
Contamination Test Results - Soil

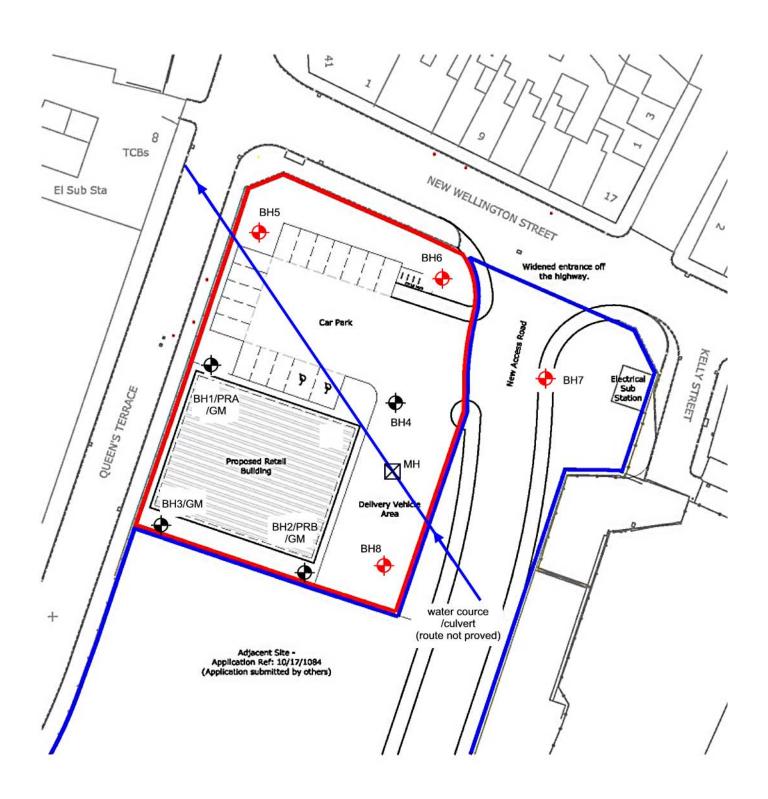
Contamination Comparison Table - Soil

Landfill Gas Tests

Conceptual Model

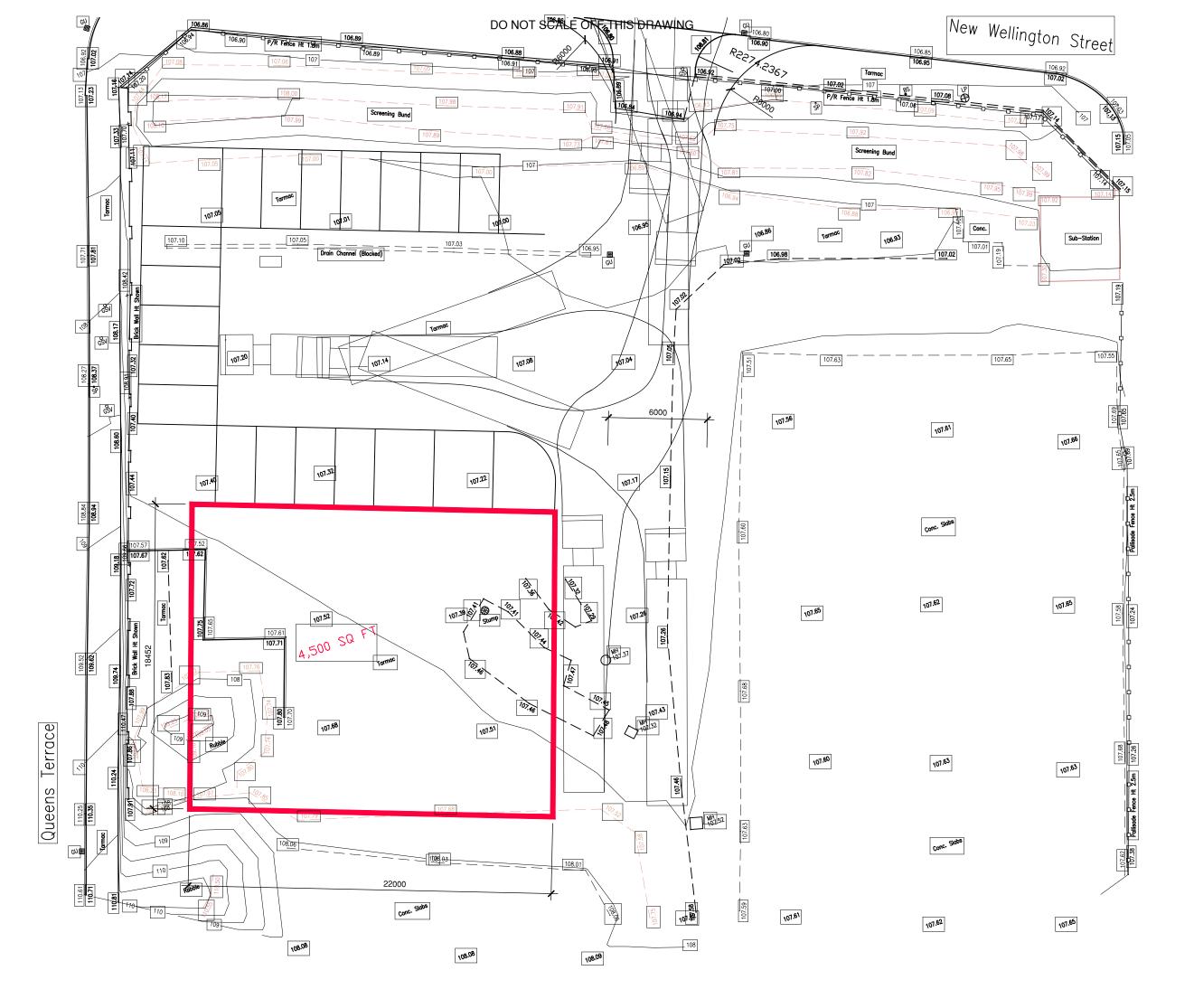
CONTAMINATION TEST UNITS


Conversion factor	Name	Symbol	Numerical Value	Alternative description	Commonly used for:
	per cent	%	1 in 100 (10²)		total sulphur, hazardous waste
% x10	parts per thousand	‰	1 in 1000 (10 ³)	g/l (grams per litre)	water soluble sulphate test
0/ 1000	parts per million	ppm	1 in 1,000,000 (10 ⁶)	mg/kg (milligrams per kilogram)	most soil tests
‰ x 1,000				mg/l (milligrams per litre)	water tests
	noute non billion		1 in 1,000,000,000	μg/kg (micrograms per kilogram)	PAH soil tests
ppm x 1,000	parts per billion	ppb	(10 ⁹)	μg/l (micrograms per litre)	water/leachate tests
nnh v 1 000	norto nor trillion	nnt	1 in 1,000,000,000,000	ng/kg (nanograms per kilogram)	PAH soil tests
ppb x 1,000	parts per trillion	ppt	(10 ¹²)	ng/l (nanograms per litre)	water/leachate tests


ABBREVIATIONS

		ABBREVIATIONS			
Chemical	BAP	Benzo(a)pyrene			
	BTEX	Benzene, toluene, ethylbenzene, xylene			
	DAHA	Dibenzo(ah)anthracene			
	MTBE	Methyl tertiaryt-butyl ether (additive to petrol)			
	EPH	Extractable petroleum hydrocarbons (formerly diesel range organics – DRO)			
	NFD	No fibres detected (asbestos test)			
	PAH	Polycyclic aromatic hydrocarbons			
	PCB	Polychlorinated biphenyls			
	PCE	Perchloroethylene or tetrachloroethylene			
	PID	Photo ionisation detector (screen for VOC)			
	PRO/GRO	Petrol range organics/gasoline range organics			
	SVOC	Semi-volatile organic compounds			
	TCE	Trichloroethylene			
	TPH	Total petroleum hydrocarbons			
	VOC	Volatile organic compounds			
<u>Other</u>	AGS	Association of Geotechnical Specialists			
	BGS	British Geological Survey			
	BRE	Building Research Establishment			
	CBR	California Bearing Ratio			
	CIEH	Chartered Institute of Environmental Health			
	CIRIA	Construction Industry Research and Information Association			
	CLEA	Contaminated Land Exposure Assessment (Environment Agency/DEFRA)			
	CLR 8	Contaminated Land Research Report 8 (Environment Agency/DEFRA)			
	DWQ	Drinking water quality			
	EA	Environment Agency			
	EQS	Environmental quality standards (for rivers etc.)			
	ICRCL	Inter-departmental Commission for the Reclamation of Contaminated Land			
	LQM	Land Quality Management Ltd (Land and Environmental Consultancy).			
	NHBC	National House Builders Council			
	SGV	Soil Guideline Values			
	SPT	Standard penetration test			

TPH Working Group


TPHWG

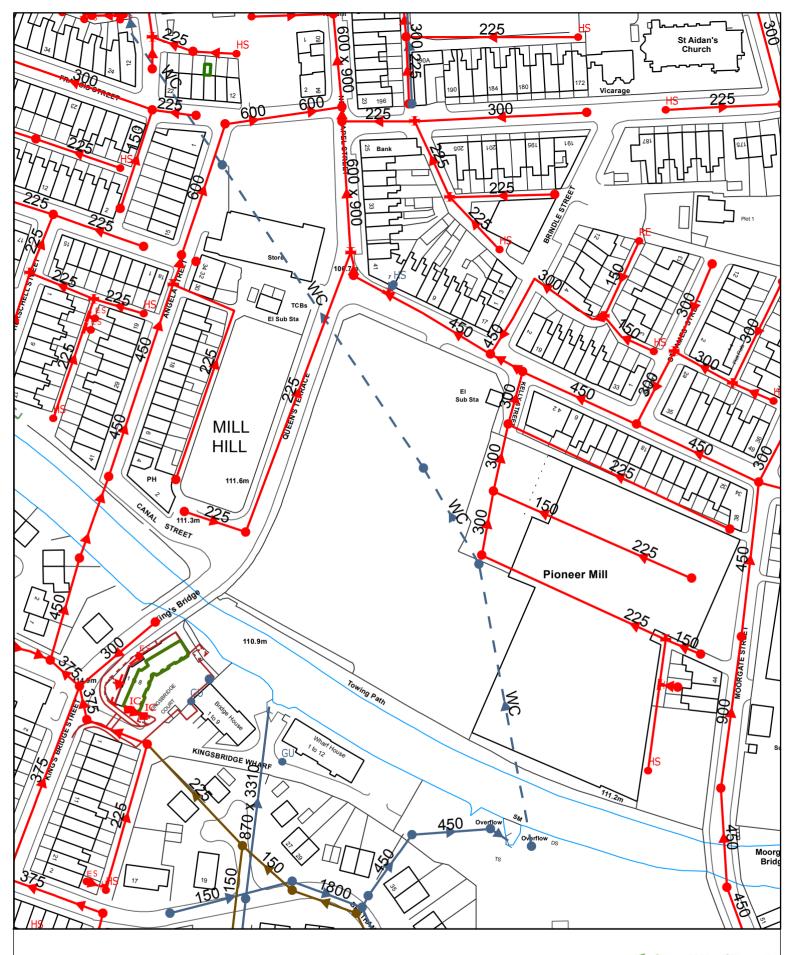
New Wellington Street, Blackburn. BB2 4PJ

Topographic plan

Project
MILL HILL PROPOSAL
Blackburn

Title

PROPOSED SITE LAYOUT


Scale	1:200@A3	03.10.16
Drawn	PS	Checked

Drawing Number

MILL-A-2100

Heron Foods Limited Jackson Way Melton East Yorkshire HU14 3HJ t. 0845 603 7300 f. 01482 632520

This drawing is the copyright of Heron Foods Limited.

Date: 15/11/2017

Extract from Map of Public Sewers

Printed By:

Property Searches

PLOT ADJ 7, TEWKESBURY STREET, BLACKBURN, BB2 4P ping life flow smoothly

The position of this underground apparatus shown on this plan is approximate only and is given in accordance with the best information currently available. The actual positions may be different from those shown on the plan and private pipes, sewers or drains may not be recorded. United Utilities Water will not accept liability for any loss or damage caused by the actual position being different from those shown. Crown copyright and database rights [2016] Ordnance Survey 100022432.

United Utilities Water Limited 2014 The plan is based on the Ordnance Survey Map with the sanction of Controller of H.M.Stationery Office. Crown and Utilities copyrights are reserved. Unauthorised reproduction will infringe these copyrights.

WORMS EYE GEOTECHNICAL			Cannon House, 52 Burnley, Lancashire			Site New Wellington Street, Blackburn	Borehole Number	
GEOIL	CHINICAL	-					1	
Excavation Drive-in Win	Method dow Sampler	Dimensions			vel (TmOD) 7.40	Client Lea Hough	Job Number BB2 4PJ	
		Locatio	ear mid-west boundary	Dates 13/1 14/1	2/2017- 2/2017	Engineer DL	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	(TmOD)	Depth (m) Thickness)	Description	Legend X	
Remarks Water at 1.4 See Probe A			Water strike(1) at 1.45m. PEN = <20 KN/m2	107.30		Black tarmac and gravel (MADE GROUND) Grey slightly sandy ash, gravel and brick (MADE GROUND) Ash, brick and clay (MADE GROUND) Very soft light brown andy, silty (very low strength) CLAY Brownish grey silty (high strength) CLAY with rare gravel Grey silty (high strength) CLAY with rare gravel Complete at 5.00m	∑1	
Bands of as	h and brick in made <u>(</u>	ground.				1:40 Figure BB	EL/SG No. 52 4PJ.1	

WOR	MS EYE		Cannon House, 52	Bank Pa	arade	Site		Borehole Number
	CHNICAL		Burnley, Lancashire	e, BB11	1TS	New Wellington Street, Blackburn		2
Excavation Drive-in Wine	Method dow Sampler	Dimens	ions		Level (TmOD) 07.50	Client Lea Hough		Job Number BB2 4PJ
		Locatio To	n wards southeast corner	Dates 13	/12/2017- /12/2017	Engineer DL		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (TmOD)	Depth (m) (Thickness)	Description		Mater Mater
Remarks			Water strike(1) at 2.20m.	106.20 105.70 105.00	1.30 (0.50) 1.80 (0.70) 2.50 (1.50)	Grey concrete Brown slightly sandy silty clay with gravel and brick fragments (MADE GROUND) Gravelly clay (MADE GROUND) Brown (medium strength) silty CLAY Greyish brown (medium/high strength) gravelly CLAY Complete at 4.00m		× × × × × × × × × × × × × × × × × × ×
Wet at 2.2m See Probe B Poor sample	}						Scale approx) 1:40 Figure No	
								4PJ.2

	MS EYE CHNICAL		Cannon House, 52 Burnley, Lancashire			Site New Wellington Street, Blackburn	Borehol Number	e
Excavation		Dimensi	<u> </u>		evel (TmOD)	Client	Job	_
Drive-in Wind		Dimensi	ons		07.60	Lea Hough	Number BB2 4P	
		Location Nea	ar southwest corner	Dates 13 14	/12/2017- /12/2017	Engineer DL	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (TmOD)	Depth (m) (Thickness)	Description	Legend	Water
Romarks				107.50 107.20 106.90 106.60 106.50	0.30) 0.40 0.30) 0.70 0.70 0.30) 0.70 0.10 0.10) 1.10 0.80)	Dark brown topsoil with leaves and roots (MADE GROUND) Brown sand and gravel with roots and plastic (MADE GROUND) Grey sand, gravel, brick and concrete (MADE GROUND) Concrete and large brick piece (MADE GROUND) Membrane Concrete, gravel, brick and plastic fragment (MADE GROUND) Refusal at 1.90m		
Remarks Borehole refi	used at 1.9m in mad	e ground, [Dry			Scale (approx)	Logged By	
						Figure BB	No. 2 4PJ.3	

	MS EYE		Cannon House, 52			Site New Wellington Street, Blackburn	Borehole Number
GEUIE	CHNICAL		Burnley, Lancashire			-	4
Excavation Drive-in Wine	Method dow Sampler	Dimens	ions		Level (TmOD) 107.20	Client Lea Hough	Job Number BB2 4PJ
		Locatio	n ddle east side	Dates 13	8/12/2017- 1/12/2017	Engineer DL	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (TmOD)	Depth (m) (Thickness)	Description	Legend X
			Water strike(1) at 1.90m.	107.05 106.90 106.75 106.35 106.20 105.60 105.20 104.80 104.20	(0.15) (0.15) (0.30) (0.15) (0.40) (0.40) (0.60) (0.60) (0.40)	Black tarmac with gravel (MADE GROUND) Grey slightly sandy, ash and gravel (MADE GROUND) Reddish brown sand (MADE GROUND) Light grey sand and gravel with rare brick (MADE GROUND) Brownish grey clay gravelly matrix with concrete and brick (MADE GROUND) Brownish grey silty clay with gravel (MADE GROUND) Brown clayey sand with gravel (possible made ground) Brown silty clay with gravel (and brick?) (possible made ground) Grey silty slightly gravelly CLAY Stiff grey gravelly CLAY Complete at 4.00m	∑1
Remarks Wet at 1.9m					1	Scale (approx)	Logged By
						1:40 Figure N	EL/SG
							4PJ.4

	MS EYE		Cannon House, 52			Site		Borehole Number
GEOTE	CHNICAL		Burnley, Lancashire	, BB11	1TS	New Wellington Street, Blackburn		5
Excavation		Dimens	ions		_evel (TmOD)	Client		Job Number
Drive-in Wind	dow Sampler			1	07.10	Lea Hough		BB2 4PJ
		Locatio Ne	n ar northwest corner of plot	Dates 13	/12/2017- /12/2017	Engineer DL		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (TmOD)	Depth (m) (Thickness)	Description		Kater Name
				106.95	(0.85)	Grey sand and gravel (MADE GROUND) Compact black/brown silty ash, gravel and brick (MADE GROUND) Complete at 1.00m		
Remarks Terminated a	at 1.0m, Dry					(a	Scale approx)	Logged By
						1	Figure No	o.
							BB2	4PJ.5

WORN	MS EYE		Cannon House, 52 I			Site	Borehole Number
GEOTE	CHNICAL		Burnley, Lancashire	, BB11	1TS	New Wellington Street, Blackburn	6
Excavation Drive-in Wind	Method dow Sampler	Dimensi	ions		Level (mOD) 07.00	Client Lea Hough	Job Number BB2 4PJ
		Location	n ar northeast corner of plot.	Dates 13	/12/2017- /12/2017	Engineer DL	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nate
Pamarka				106.95		Grey tarmac and gravel (MADE GROUND) Compact dark greyish brown silt with gravel, brick, ash and rare slate (MADE GROUND) Complete at 1.00m	
Remarks Terminated a	at 1.0m, Dry					Scale (approx)	Logged By
						Figure	
						BE	32 4PJ.6

WORN	MS EYE		Cannon House, 52 E	Bank Pa	arade	Site	Borehole Number
	CHNICAL		Burnley, Lancashire	, BB11	1TS	New Wellington Street, Blackburn	7
Excavation Drive-in Wind		Dimens	ions		Level (mOD) 07.60	Client Lea Hough	Job Number BB2 4PJ
		Locatio At	n new access Road (northeast)	Dates 13 14	/12/2017- /12/2017	Engineer DL	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nate
Remarks				107.55 107.30	0.05 (0.25) 0.30	Ellack tarmac (MADE GROUND) Light brown sand and gravel (MADE GROUND) Compact dark grey/black ash, gravel, brick, clay and sand (MADE GROUND) Complete at 1.00m	Longed
Terminatedr	at 1.0m, Dry					Scale (approx	Logged By
						Figure B	e No. B2 4PJ.7

WORN	MS EYE		Cannon House, 52 E	Bank Pa	arade	Site	Borehole Number
	CHNICAL		Burnley, Lancashire	, BB11	1TS	New Wellington Street, Blackburn	8
Excavation Drive-in Wind		Dimens	ions		Level (mOD) 107.40	Client Lea Hough	Job Number BB2 4PJ
		Locatio Ne	n ar southeast corner of plot	Dates 13 14	3/12/2017- 1/12/2017	Engineer DL	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend start
Remarks				107.25 107.10 106.95 106.60 106.40	(0.15) - (0.30) - (0.15) - (0.35) - (0.35) - (0.30)	Black tarmac with gravel (MADE GROUND) Grey slightly sandy ash, gravel and shale (MADE GROUND) Reddish brown sand (MADE GROUND) Grey sand and gravel (MADE GROUND) Compact brownish grey clayey gravelly matrix with concrete and brick (MADE GROUND) Complete at 1.00m	Logged
Terminated a	at 1.0m, Dry					Scale (approx)	Logged By
						Figure N	No. 2 4PJ.8
İ						1002	0.0

WORMS EYE LTD DYNAMIC PROBE LOG

Site: New Wellington Street, Blackburn. BB2 4PJ Probe: PRA

Location: Near mid-west boundary, by BH1 Date: 14th December 2017

Method: 63.5KG Weight with 750mm drop. JSH

Depth	Blows/	Blows/				Diagra	am				<u>Strength</u>
<u>(m)</u>	100mm										
		(N value)									
			0	5	10	15	20	25	30	35	40
0			l								
	16		****	*****	*****						
	10	32	****								
	6 6		****								
0.5	6	20	****								
0.5	8	20	****	***							
	5		****								(made ground)
	5	15	****								(
	5		****								
1	6		****								
	6	13	****	*							
	1		*								
	0										
4.5	0	1	*								
1.5	1		ļ								
	0 1	1	*								
	0	ı									
	0										
2	1	2	*								very low
	1		*								- , -
	1		*								
	1	3	*								
	1		*								
2.5	1		*								
	1	4	**								
	2 2 3		**							-	
	2	8	***								
3	3	٥	***								low
	2		**								10.44
	3	8	***								
	3	_	***								
	4		****							-	
3.5	4	11	****								
	3		***								medium
	4		****								
	3	11	***								
3.9	4									-	
											Continued
											Conditiueu

Dynamic Probe Log Continued

Probe: PRA

Site: New Wellington Street, Blackburn. BB2 4PJ

<u>Depth</u>	Blows/	Blows/				Diagr	am_					<u>Strength</u>
<u>(m)</u>	<u>100mm</u>											
		(N value)	0	5	10	15	20	25	30	35	40	
3.9												
4	4		****									
	5	15	****									
	6		****									
	7		****									high
	7	21	****									
4.5	7		****									
	16			*****	*****							
	10	35		****								
	9		****							-		
	9		****									
5	10	41		****								
	22				*****	****						
	14			*****	***							very high
	10	56		****								
	32						******					
5.5	50		****	*****	*****	*****	******	*****	*****	****		
			Effec	ctive r	efusal	at 5.5m	າ (unlike	ly to be	rock)			

WORMS EYE LTD DYNAMIC PROBE LOG

Site: New Wellington Street, Blackburn. BB2 4PJ Probe: PRB

Location: Towards southeast corner, by BH2 Date: 14th December 2017

Method: 63.5KG Weight with 750mm drop. JSH

<u>Depth</u>	Blows/					Diagr	<u>am</u>				<u>Strength</u>
<u>(m)</u>	<u>100mm</u>										
		(N value)	0	5	10	15	20	25	30	35	40
0			U	5	10	13	20	25	30	33	40
	6		****	+							
	8	26	****	***							
	12		****	*****	*						
	15		*****	*****	****						
0.5	6	27	****	t							
	6		*****								
	6		*****	k							
	2	10	**								
	2		**								
1	2	0	**								(d d)
	2	6	**								(made ground)
	2 2		**								
	3	8	***								
1.5	3	O	***								
1.0	2		**								
	2	6	**								
	2		**								
	1		*							•	
2	2	5	**								
	2		**								
	2 2 2 2		**								
	2	6	**								
0.5	2		**								medium
2.5		e	**								
	2 2	6	**								
	4		****								
	3	11	***								
3	4		****								
	5		****							•	
	4	20	****								
	11		*****								
	7		*****								
3.5	7	18	*****	**							high
	4		****								
	13	6.4	*****		* * * *						
2.0	9	31	****								
3.9	9]								
											Continued
											Continued

Dynamic Probe Log Continued

Probe: PRB

Site: New Wellington Street, Blackburn. BB2 4PJ

<u>Depth</u>	Blows/	Blows/			Diagra	am_					Strength
<u>(m)</u>	100mm	300mm									
		(N value)	0 5	10	15	20	25	30	35	40	
3.9			4.4.4.4.4.4.4.4.4.								
4	10		*****	*							
	7	25	*****								
	8		****								
	7		****								
	8	23	******								
4.5	8		*****								
	9	00	****								
	10	36	****								
	17		****								
_	12		****								
5	13	34	*****								
	9		****	***							
	12	25	*****								
	12	35	*****								
	11		*****								
5.5	12	26	*****								
	11 13	36	*****								
	15 15		*****	*****							
	14	44	*****	****							high
6	15	44	*****	*****							high
	10		*****	*							
	10	30	*****	*							
	10	30	*****	*							
	10		*****	*							
6.5	10	31	*****	*							
0.0	11	0.1	*****	**							
	10		*****	*							
	10	31	*****	*							
	11	0.	*****	**							
7	11		*****	**							
	9	32	*****								
	12		*****	***							
	14		*****	****							
	12	40	*****	***							
7.5	14		*****	****							
	14		*****	****							
	12	41	*****	***							
	15		*****								
	17		*****								
8	17	49	*****								
8.1	15		*****	*****							
•	•		•								
										Contin	ued

Dynamic Probe Log Continued

Probe: PRB

Site: New Wellington Street, Blackburn. BB2 4PJ

Depth	Blows/	Blows/			D	iagra	am					Strength
<u>(m)</u>	100mm											
		(N value)	0 !	5 10)	15	20	25	30	35	40	
8.1												
	16			*****								
	16	52		*****								
	20			******		ĸ						
8.5	17			*****								
	16	52		*****								
	19			*****								
	16	40		*****								
0	16 17	49		*****								
9	18		*****	*****	***							
	19	59	*****	*****	****							high
	22	39	*****	*****	****	***						riigii
	20		*****	*****	****	k						
9.5	22	66	*****	*****	****	***						
0.0	24		*****	*****	****	****						
	20		*****	*****	****	*						
	22	65	*****	*****	****	***						
	23		*****	*****	****	****						
10	20		*****	*****	****	*				-		
	22	68		*****								
	26			*****								very high
	28			*****								
	30	93		*****								
10.5	35			*****								
	50		*****	******	****	*****	******	*****	*****	****		

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Report Number: 705216-1

Date of Report: 17-Jan-2018

Customer: Worms Eye Ltd

Cannon House

52

Bank Parade Burnley Lancashire BB11 1TS

Customer Contact: Mr Stuart Hartley

Customer Job Reference:

Customer Purchase Order: 50719

Customer Site Reference: New Wellington st Blackburn

Date Job Received at Concept: 19-Dec-2017

Date Analysis Started: 21-Dec-2017

Date Analysis Completed: 17-Jan-2018

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation
This report should not be reproduced except in full without the written approval of the laboratory
Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs
All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical
Services Quality Manual

Report checked and authorised by : Aleksandra Pacula Customer Service Advisor Issued by :
Aleksandra Pacula
Customer Service Advisor

Concept Reference: 705216

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

Asbestos

			Concep	t Reference	705216 001	705216 004	705216 007	705216 010	705216 012
Customer Sample Reference					BH1	BH2	BH3	BH4	BH5
Bottom Depth					0.30	0.30	0.30	0.20	0.30
Date Sampled					Deviating	Deviating	Deviating	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units					
Asbestos	T27	AR			N.D.	N.D.	Amosite Loose Fibres Detected Chrysotile Loose Fibres Detected	N.D.	Chrysotile Loose Fibres Detected

Concept Reference: 705216

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

Asbestos

			Concep	t Reference	705216 013	705216 016	705216 017
		Custon	ner Sampl	e Reference	BH6	BH7	ВН8
			В	ottom Depth	0.40	0.40	0.20
			Da	ate Sampled	Deviating	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units			
Asbestos	T27	AR			Chrysotile Loose Fibres Detected	N.D.	N.D.

Concept Reference: 705216

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

Worms Eye Suite

			Conce	ot Reference	705216 001	705216 004	705216 007	705216 010	705216 012
		Custon	ner Samp	BH1	BH2	ВН3	BH4	BH5	
			В	0.30	0.30	0.30	0.20	0.30	
	Deviating	Deviating	Deviating	Deviating	Deviating				
Determinand	Method	Test Sample	LOD	Units					
Arsenic	T6	A40	1	mg/kg	19	6	10	5	130
Cadmium	T6	A40	1	mg/kg	<1	<1	2	<1	2
Chromium	T6	A40	1	mg/kg	18	19	31	13	240
Chromium VI	T6	AR	1	mg/kg	<1	<1	<1	<1	<1
Copper	T6	A40	1	mg/kg	67	24	93	18	470
Cyanide(Total)	T4	AR	1	mg/kg	<1	<1	<1	<1	<1
Cyanide(free)	T4	AR	1	mg/kg	<1	<1	<1	<1	<1
Lead	T6	A40	1	mg/kg	200	18	460	25	950
Mercury	T6	A40	1	mg/kg	<1	<1	<1	<1	2
Nickel	T6	A40	1	mg/kg	30	26	20	16	98
рН	T7	A40			10.2	8.3	8.4	8.9	8.1
Phenols(Mono)	T4	AR	1	mg/kg	<1	<1	<1	<1	<1
Selenium	T6	A40	3	mg/kg	<3	<3	<3	<3	<3
Soil Organic Matter	T287	A40	0.1	%	9.2	1.1	5.8	14	26
SO4(Total)	T6	A40	0.01	%	0.24	0.06	0.34	0.06	0.19
SO4(2:1)	T6	AR	0.1	g/l	<0.1	<0.1	<0.1	<0.1	<0.1
Sulphide	T4	AR	10	mg/kg	<10	<10	10	14	<10
Sulphur(Free)	T2	AR	500	mg/kg	<500	<500	<500	6600	<500
Thiocyanate	T4	A40	10	mg/kg	<10	<10	<10	<10	<10
Total Organic Carbon	T21	A40	0.1	%	5.3	0.7	3.4	7.9	15
Zinc	Т6	A40	1	mg/kg	160	76	450	58	680

Concept Reference: 705216

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

Worms Eye Suite

		705216 013	705216 016	705216 017			
		BH6	BH7	BH8			
	0.40	0.40	0.20				
			D	ate Sampled	Deviating	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units			
Arsenic	T6	A40	1	mg/kg	64	31	3
Cadmium	T6	A40	1	mg/kg	1	<1	<1
Chromium	T6	A40	1	mg/kg	67	19	8
Chromium VI	T6	AR	1	mg/kg	<1	<1	<1
Copper	T6	A40	1	mg/kg	230	130	12
Cyanide(Total)	T4	AR	1	mg/kg	<1	<1	<1
Cyanide(free)	T4	AR	1	mg/kg	<1	<1	<1
Lead	T6	A40	1	mg/kg	350	180	12
Mercury	T6	A40	1	mg/kg	<1	<1	<1
Nickel	T6	A40	1	mg/kg	50	39	9
pН	T7	A40			8.2	8.1	8.6
Phenols(Mono)	T4	AR	1	mg/kg	<1	<1	<1
Selenium	T6	A40	3	mg/kg	<3	<3	<3
Soil Organic Matter	T287	A40	0.1	%	12	17	0.9
SO4(Total)	T6	A40	0.01	%	0.15	0.08	0.01
SO4(2:1)	T6	AR	0.1	g/l	<0.1	<0.1	<0.1
Sulphide	T4	AR	10	mg/kg	<10	<10	<10
Sulphur(Free)	T2	AR	500	mg/kg	<500	<500	<500
Thiocyanate	T4	A40	10	mg/kg	<10	<10	<10
Total Organic Carbon	T21	A40	0.1	%	7.1	10	0.5
Zinc	T6	A40	1	mg/kg	260	130	25

Concept Reference: 705216

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

	705216 011	705216 014							
	Customer Sample Reference								
			В	ottom Depth	0.90	0.90			
			D	ate Sampled	Deviating	Deviating			
Determinand	Method	Test Sample	LOD	Units		- 1			
Benzene	T54	AR	0.001	mg/kg	(13) < 0.001	(13,110) <0.002			
EthylBenzene	T54	AR	0.001	mg/kg	<0.001	(110) < 0.002			
M/P Xylene	T54	AR	0.001	mg/kg	<0.001	(110) < 0.002			
Methyl tert-Butyl Ether	T54	AR	0.001	mg/kg	<0.001	(110) < 0.002			
O Xylene	T54	AR	0.001	mg/kg	<0.001	(110) < 0.002			
Toluene	T54	AR	0.001	mg/kg	⁽¹³⁾ <0.001	(110,13) <0.002			
Total BTEX & MTBE	T85	AR	0.001	mg/kg	<0.001	(110) < 0.002			

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

Wormseye TPH (CWG)

			Concep	t Reference	705216 001	705216 003	705216 004	705216 007	705216 010
		Custo	mer Sampl	e Reference	BH1	BH1	BH2	BH3	BH4
			Во	ottom Depth	0.30	2.00	0.30	0.30	0.20
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units					
Benzene	T54	AR	0.001	mg/kg	⁽¹³⁾ 0.003	(13) < 0.001	(110,13) <0.002	(13,110) <0.002	(13) 0.008
Toluene	T54	AR	0.001	mg/kg	⁽¹³⁾ 0.014	(13) < 0.001	(110,13) <0.002	(13,110) <0.002	⁽¹³⁾ 0.010
EthylBenzene	T54	AR	0.001	mg/kg	0.019	<0.001	(110) < 0.002	(110) < 0.002	⁽¹¹⁰⁾ <0.002
M/P Xylene	T54	AR	0.001	mg/kg	0.026	<0.001	(110) < 0.002	(110) < 0.002	0.004
O Xylene	T54	AR	0.001	mg/kg	0.012	<0.001	(110) < 0.002	(110) < 0.002	⁽¹¹⁰⁾ <0.002
Methyl tert-Butyl Ether	T54	AR	0.001	mg/kg	<0.001	<0.001	(110) < 0.002	(110) < 0.002	(110) < 0.002
TPH (C5-C6 aliphatic)	T54	AR	0.010	mg/kg	<0.010	<0.010	(110) < 0.020	(110) < 0.020	(110) < 0.020
TPH (C6-C8 aliphatic)	T54	AR	0.00001	g/kg	<0.000010	<0.000010	(110) <0.000020	(110) <0.000020	(110) <0.000020
TPH (C8-C10 aliphatic)	T54	AR	0.010	mg/kg	<0.010	<0.010	(110) < 0.020	(110) < 0.020	(110) < 0.020
TPH (C10-C12 aliphatic)	Т8	M105	1	mg/kg	(100,13) <10	(13) <1	⁽¹³⁾ <1	(13,100) <10	(13,100) <10
TPH (C12-C16 aliphatic)	T8	M105	1	mg/kg	(13,100) <10	(13) <1	⁽¹³⁾ <1	(100,13) <10	(100,13) <10
TPH (C16-C21 aliphatic)	T8	M105	1	mg/kg	(100,13) <10	(13) <1	⁽¹³⁾ <1	(13,100) <10	(100,13) <10
TPH (C21-C35 aliphatic)	T8	M105	1	mg/kg	(100,13) <10	⁽¹³⁾ <1	(13) <1	(100,13) <10	⁽¹³⁾ 740
TPH (Aliphatic) total	T85	M105		mg/kg	(13,100) <10	⁽¹³⁾ N.D.	⁽¹³⁾ N.D.	⁽¹³⁾ N.D.	⁽¹³⁾ 740
TPH (C6-C7 aromatic)	T54	AR	0.010	mg/kg	<0.010	<0.010	(110) < 0.020	(110) < 0.020	(110) < 0.020
TPH (C7-C8 aromatic)	T54	AR	0.010	mg/kg	0.014	<0.010	(110) < 0.020	(110) < 0.020	(110) < 0.020
TPH (C8-C10 aromatic)	T54	AR	0.010	mg/kg	0.12	<0.010	(110) < 0.020	(110) < 0.020	(110) < 0.020
TPH (C10-C12 aromatic)	Т8	M105	1	mg/kg	(13,100) <10	(13) <1	⁽¹³⁾ <1	(13,100) <10	(100,13) <10
TPH (C12-C16 aromatic)	Т8	M105	1	mg/kg	(13) 36	(13) 4	(13) <1	(100,13) <10	(13) 64
TPH (C16-C21 aromatic)	Т8	M105	1	mg/kg	(13) 140	⁽¹³⁾ 16	(13) <1	(100,13) <10	⁽¹³⁾ 150
TPH (C21-C35 aromatic)	Т8	M105	1	mg/kg	(13) 200	(13) 28	⁽¹³⁾ <1	(13) 50	(13,100) <10
TPH (Aromatic) total	T85	M105		mg/kg	(13) 380	(13) 48	⁽¹³⁾ N.D.	(13) 50	⁽¹³⁾ 210
TPH (Aliphatic+Aromatic) (sum)	T85	M105		ma/ka	(13) 380	(13) 48	(13) N.D.	(13) 50	(13) 950

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

Wormseye TPH (CWG)

			Concep	t Reference	705216 012	705216 013	705216 016	705216 017	705216 018
		Custor	mer Sample	e Reference	BH5	BH6	BH7	BH8	BH2
			Вс	ottom Depth	0.30	0.40	0.40	0.20	3.70
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units					
Benzene	T54	AR	0.001	mg/kg	⁽¹³⁾ 0.007	(13,110) <0.002	(13) < 0.001	(13) < 0.001	(13) < 0.001
Toluene	T54	AR	0.001	mg/kg	(13) 0.002	⁽¹³⁾ 0.002	(13) < 0.001	(13) < 0.001	(13) < 0.001
EthylBenzene	T54	AR	0.001	mg/kg	<0.001	(110) < 0.002	<0.001	<0.001	<0.001
M/P Xylene	T54	AR	0.001	mg/kg	0.002	(110) < 0.002	<0.001	<0.001	<0.001
O Xylene	T54	AR	0.001	mg/kg	0.001	(110) < 0.002	<0.001	<0.001	<0.001
Methyl tert-Butyl Ether	T54	AR	0.001	mg/kg	<0.001	(110) < 0.002	<0.001	<0.001	<0.001
TPH (C5-C6 aliphatic)	T54	AR	0.010	mg/kg	<0.010	(110) < 0.020	<0.010	<0.010	<0.010
TPH (C6-C8 aliphatic)	T54	AR	0.00001	g/kg	<0.000010	(110) <0.000020	<0.000010	<0.000010	<0.000010
TPH (C8-C10 aliphatic)	T54	AR	0.010	mg/kg	<0.010	(110) < 0.020	<0.010	<0.010	<0.010
TPH (C10-C12 aliphatic)	T8	M105	1	mg/kg	(100,13) <10	(100,13) <10	(13) <1	(100,13) <10	⁽¹³⁾ <1
TPH (C12-C16 aliphatic)	T8	M105	1	mg/kg	(13,100) <10	(100,13) <10	(13) <1	(100,13) <10	(13) <1
TPH (C16-C21 aliphatic)	T8	M105	1	mg/kg	(13,100) <10	(13,100) < 10	(13) <1	(100,13) <10	⁽¹³⁾ <1
TPH (C21-C35 aliphatic)	T8	M105	1	mg/kg	(100,13) <10	(13) 59	(13) <1	(13,100) <10	⁽¹³⁾ 6
TPH (Aliphatic) total	T85	M105		mg/kg	(100,13) <10	(13) 59	⁽¹³⁾ N.D.	(13,100) <10	⁽¹³⁾ 6.0
TPH (C6-C7 aromatic)	T54	AR	0.010	mg/kg	<0.010	(110) < 0.020	<0.010	<0.010	<0.010
TPH (C7-C8 aromatic)	T54	AR	0.010	mg/kg	<0.010	(110) < 0.020	<0.010	<0.010	<0.010
TPH (C8-C10 aromatic)	T54	AR	0.010	mg/kg	<0.010	(110) < 0.020	<0.010	<0.010	<0.010
TPH (C10-C12 aromatic)	T8	M105	1	mg/kg	(13,100) <10	(100,13) <10	(13) <1	(100,13) <10	(13) <1
TPH (C12-C16 aromatic)	Т8	M105	1	mg/kg	⁽¹³⁾ 11	(100,13) <10	(13) <1	(13,100) <10	(13) <1
TPH (C16-C21 aromatic)	Т8	M105	1	mg/kg	(13) 88	⁽¹³⁾ 61	(13) 4	(100,13) <10	(13) <1
TPH (C21-C35 aromatic)	T8	M105	1	mg/kg	(13) 300	⁽¹³⁾ 180	(13) 17	(13,100) <10	(13) 6
TPH (Aromatic) total	T85	M105		mg/kg	(13) 400	(13) 240	⁽¹³⁾ 21	(13,100) <10	(13) 6.0
TPH (Aliphatic+Aromatic) (sum)	T85	M105	31 70 350	mg/kg	(13) 400	(13) 300	(13) 21	(13,100) <10	(13) 12

Concept Reference: 705216

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

TPH C5-C10 (ali/aro + sum)

			Conce	t Reference	705216 011	705216 014
		Custor	ner Sampl	e Reference	BH4	BH6
			В	ottom Depth	0.90	0.90
	Deviating	Deviating				
Determinand	7					
TPH (C5-C6 aliphatic)	T54	AR	0.010	mg/kg	<0.010	(110) < 0.020
TPH (C6-C7 aromatic)	T54	AR	0.010	mg/kg	<0.010	(110) < 0.020
TPH (C6-C8 aliphatic)	T54	AR	0.010	mg/kg	<0.010	(110) < 0.020
TPH (C7-C8 aromatic)	T54	AR	0.010	mg/kg	<0.010	(110) < 0.020
TPH (C8-C10 aliphatic)	T54	AR	0.010	mg/kg	<0.010	(110) < 0.020
TPH (C8-C10 aromatic)	T54	AR	0.010	mg/kg	<0.010	(110) < 0.020
Total Petroleum Hydrocarbons (C5 - C10 aliphatic/aromatic)	T85	AR	0.010	mg/kg	< 0.010	(110) < 0.020

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

TPH C10-C16 (ali/aro + sum)

			Conce	ot Reference	705216 011	705216 014
		Custor	ner Samp	le Reference	BH4	BH6
			В	ottom Depth	0.90	0.90
	Deviating	Deviating				
Determinand	Method	Test Sample	LOD	Units		
TPH (C10-C12 aliphatic)	T8	M105	1	mg/kg	(13) <1	⁽¹³⁾ <1
TPH (C10-C12 aromatic)	T8	M105	1	mg/kg	⁽¹³⁾ <1	⁽¹³⁾ <1
TPH (C12-C16 aliphatic)	T8	M105	1	mg/kg	(13) <1	⁽¹³⁾ <1
TPH (C12-C16 aromatic)	T8	M105	1	mg/kg	⁽¹³⁾ <1	⁽¹³⁾ <1
Total Petroleum Hydrocarbons (C10-C16 aliphatic/aromatic)	T85	M105	1	ma/ka	(13) <1	(13) <1

Concept Reference: 705216

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

TPH C16-C40 (ali/aro + sum)

	0.00		Concep	t Reference	705216 011	705216 014	
		Custon	ner Sampl	e Reference	BH4	BH6	
	Bottom Depth						
			Da	ate Sampled	Deviating	Deviating	
Determinand	Method	Test Sample	LOD	Units			
TPH (C16-C21 aliphatic)	T8	M105	1	mg/kg	(13) <1	(13) <1	
TPH (C16-C21 aromatic)	Т8	M105	1	mg/kg	(13) 8	(13) 2	
TPH (C21-C35 aliphatic)	T8	M105	1	mg/kg	(13) 2	(13) 5	
TPH (C21-C35 aromatic)	T8	M105	1	mg/kg	(13) 26	⁽¹³⁾ 12	
TPH (C35-C40 aliphatic)	T8	M105	1	mg/kg	(13) <1	(13) <1	
TPH (C35-C40 aromatic)	Т8	M105	1	mg/kg	(13) <1	(13) <1	
Total Petroleum Hydrocarbons (C16-C40 aliphatic/aromatic)	T85	M105	1	ma/ka	36	19	

Concept Reference 705216 003 705216 018

Concept Reference: 705216

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

PAH US EPA 16 (B and K split)

		Custor	ner Samp	le Reference	BH1	BH2
			В	ottom Depth	2.00	3.70
			D	ate Sampled	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units		
Naphthalene	T149	AR	0.01	mg/kg	0.06	0.01
Acenaphthylene	T149	AR	0.01	mg/kg	0.01	<0.01
Acenaphthene	T149	AR	0.01	mg/kg	0.06	0.01
Fluorene	T149	AR	0.01	mg/kg	0.06	0.01
Phenanthrene	T149	AR	0.01	mg/kg	0.31	0.11
Anthracene	T149	AR	0.01	mg/kg	0.09	0.03
Fluoranthene	T149	AR	0.01	mg/kg	0.31	0.35
Pyrene	T149	AR	0.01	mg/kg	0.28	0.29
Benzo(a)Anthracene	T149	AR	0.01	mg/kg	0.14	0.14
Chrysene	T149	AR	0.01	mg/kg	0.14	0.13
Benzo(b)fluoranthene	T149	AR	0.01	mg/kg	0.13	0.11
Benzo(k)fluoranthene	T149	AR	0.01	mg/kg	0.08	0.08
Benzo(a)Pyrene	T149	AR	0.01	mg/kg	0.13	0.11
Indeno(123-cd)Pyrene	T149	AR	0.01	mg/kg	0.07	0.07
Dibenzo(ah)Anthracene	T149	AR	0.01	mg/kg	0.03	0.03
Benzo(ghi)Perylene	T149	AR	0.01	mg/kg	0.09	0.07
PAH(total)	T149	AR	0.01	ma/ka	2.0	1.6

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

Total and Speciated USEPA16 PAH

			Concep	t Reference	705216 001	705216 004	705216 007	705216 010	705216 012
		Custon	ner Sampl	e Reference	BH1	BH2	ВН3	BH4	BH5
			В	ottom Depth	0.30	0.30	0.30	0.20	0.30
			D	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units					
Acenaphthylene	T149	AR	0.01	mg/kg	⁽⁹⁾ <0.10	<0.01	⁽⁹⁾ <0.10	0.10	0.10
Acenaphthene	T149	AR	0.01	mg/kg	4.3	<0.01	⁽⁹⁾ <0.10	0.40	0.28
Anthracene	T149	AR	0.01	mg/kg	6.6	<0.01	0.13	0.97	0.78
Benzo(a)Anthracene	T149	AR	0.01	mg/kg	7.0	0.01	0.29	1.8	2.2
Benzo(a)Pyrene	T149	AR	0.01	mg/kg	6.0	<0.01	0.33	2.1	2.2
Benzo(b/k)Fluoranthene	T149	AR	0.01	mg/kg	8.9	0.01	0.54	4.0	3.7
Benzo(b)fluoranthene	T149	AR	0.01	mg/kg	4.8	0.01	0.28	2.3	2.1
Benzo(ghi)Perylene	T149	AR	0.01	mg/kg	3.9	0.01	0.32	1.6	1.4
Benzo(k)fluoranthene	T149	AR	0.01	mg/kg	4.0	<0.01	0.25	1.7	2.0
Chrysene	T149	AR	0.01	mg/kg	6.6	0.01	0.32	2.6	2.0
Dibenzo(ah)Anthracene	T149	AR	0.01	mg/kg	1.3	<0.01	0.10	0.68	0.49
Fluoranthene	T149	AR	0.01	mg/kg	15	0.01	0.57	3.6	3.5
Fluorene	T149	AR	0.01	mg/kg	4.3	<0.01	⁽⁹⁾ <0.10	0.28	0.27
Indeno(123-cd)Pyrene	T149	AR	0.01	mg/kg	3.1	<0.01	0.23	1.3	1.2
Naphthalene	T149	AR	0.01	mg/kg	3.9	0.01	⁽⁹⁾ <0.10	0.44	0.18
Phenanthrene	T149	AR	0.01	mg/kg	21	0.02	0.42	1.5	2.2
Pyrene	T149	AR	0.01	mg/kg	14	0.01	0.56	3.3	2.9
PAH(total)	T149	AR	0.01	mg/kg	110	0.09	3.8	25	24

Concept Reference: 705216

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

Total and Speciated USEPA16 PAH

			Conce	t Reference	705216 013	705216 016	705216 017
		Custon	ner Sampl	e Reference	ВН6	BH7	BH8
			В	ottom Depth	0.40	0.40	0.20
			D	ate Sampled	Deviating	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units			
Acenaphthylene	T149	AR	0.01	mg/kg	⁽⁹⁾ <0.10	0.01	⁽⁹⁾ <0.10
Acenaphthene	T149	AR	0.01	mg/kg	⁽⁹⁾ <0.10	0.06	⁽⁹⁾ <0.10
Anthracene	T149	AR	0.01	mg/kg	0.10	0.12	⁽⁹⁾ <0.10
Benzo(a)Anthracene	T149	AR	0.01	mg/kg	0.40	0.27	⁽⁹⁾ <0.10
Benzo(a)Pyrene	T149	AR	0.01	mg/kg	0.38	0.23	⁽⁹⁾ <0.10
Benzo(b/k)Fluoranthene	T149	AR	0.01	mg/kg	0.66	0.35	⁽⁹⁾ <0.10
Benzo(b)fluoranthene	T149	AR	0.01	mg/kg	0.39	0.18	⁽⁹⁾ <0.10
Benzo(ghi)Perylene	T149	AR	0.01	mg/kg	0.27	0.16	⁽⁹⁾ <0.10
Benzo(k)fluoranthene	T149	AR	0.01	mg/kg	0.28	0.17	0.03
Chrysene	T149	AR	0.01	mg/kg	0.40	0.26	⁽⁹⁾ <0.10
Dibenzo(ah)Anthracene	T149	AR	0.01	mg/kg	⁽⁹⁾ <0.10	0.05	⁽⁹⁾ <0.10
Fluoranthene	T149	AR	0.01	mg/kg	0.84	0.58	⁽⁹⁾ <0.10
Fluorene	T149	AR	0.01	mg/kg	⁽⁹⁾ <0.10	0.05	⁽⁹⁾ <0.10
Indeno(123-cd)Pyrene	T149	AR	0.01	mg/kg	0.22	0.12	⁽⁹⁾ <0.10
Naphthalene	T149	AR	0.01	mg/kg	⁽⁹⁾ <0.10	0.05	⁽⁹⁾ <0.10
Phenanthrene	T149	AR	0.01	mg/kg	0.32	0.48	⁽⁹⁾ <0.10
Pyrene	T149	AR	0.01	mg/kg	0.73	0.53	⁽⁹⁾ <0.10
PAH(total)	T149	AR	0.01	mg/kg	4.3	3.3	⁽⁹⁾ <0.10

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil
UU Pipe Selection Risk Assess Sum (UKWIR)

			Concep	t Reference	705216 011	705216 014						
	Customer Sample Reference											
	0.90	0.90										
	Deviating	Deviating										
Determinand	Method	Test Sample	LOD	Units								
Cresols and Chlorinated Phenols (Total)	T85	AR	0.10	mg/kg	<0.10	<0.10						
SVOC screen	T16	AR	0.1	mg/kg	<0.1	<0.1						
Tertiary amyl methyl ether	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010						
Total SVOC (exc PAH & Specific Phenols)	T85	AR	0.1	mg/kg	(36) < 0.5	(36) < 0.5						
VOC Screen (Extra Peaks)	T54	AR	0.10	mg/kg	<0.10	(110) < 0.20						

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil
Semi-Volatile Organic Compounds (USEPA 625)

		Custor		ot Reference le Reference	705216 011 BH4	705216 014 BH6	
			В	ottom Depth	0.90	0.90	
			D	ate Sampled	Deviating	Deviating	
Determinand	Method	Test Sample	LOD	Units			
Phenol	T16	AR	0.1	mg/kg	<0.1	<0.1	
Bis (2-chloroethyl) ether	T16	AR	0.1	mg/kg	<0.1	<0.1	
2-Chlorophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	
1,3-Dichlorobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	
1,4-Dichlorobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	
1,2-Dichlorobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	
Bis (2-chloroisopropyl) ether	T16	AR	0.1	mg/kg	<0.1	<0.1	
2-methyl phenol	T16	AR	0.1	mg/kg	<0.1	<0.1	
3/4-Methylphenol	T16	AR	0.1	mg/kg	<0.1	<0.1	
Hexachloroethane	T16	AR	0.1	mg/kg	<0.1	<0.1	
Nitrobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	
Isophorone 2,4-Dimethylphenol	T16	AR AR	0.1	mg/kg	<0.1	<0.1	
Bis (2-chloroethoxy) methane				mg/kg			
2,4-Dichlorophenol	T16	AR AR	0.1	mg/kg mg/kg	<0.1	<0.1 <0.1	
1,2,4-Trichlorobenzene	T16	AR	0.1	mg/kg mg/kg	<0.1	<0.1	
Naphthalene	T16	AR	0.1	mg/kg	<0.1	<0.1	
4-Chloroaniline	T16	AR	0.1	mg/kg	(36) < 0.5	(36) < 0.5	
Hexachlorobutadiene	T16	AR	0.1	mg/kg	<0.1	<0.1	
4-Chloro-3-methylphenol	T16	AR	0.1	mg/kg	<0.1	<0.1	
2-Methylnaphthalene	T16	AR	0.1	mg/kg	<0.1	<0.1	
Hexachlorocyclopentadiene	T16	AR	0.1	mg/kg	<0.1	<0.1	
2,4,6-Trichlorophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	
2,4,5-Trichlorophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	
2-Chloronaphthalene	T16	AR	0.1	mg/kg	<0.1	<0.1	
2-Nitroaniline	T16	AR	0.1	mg/kg	<0.1	<0.1	
Dimethyl phthalate	T16	AR	0.1	mg/kg	<0.1	<0.1	
2,6-Dinitrotoluene	T16	AR	0.1	mg/kg	<0.1	<0.1	
Acenaphthylene	T16	AR	0.1	mg/kg	<0.1	<0.1	
Acenaphthene	T16	AR	0.1	mg/kg	<0.1	<0.1	
3-Nitroaniline	T16	AR	0.1	mg/kg	(36) < 0.5	(36) < 0.5	
Dibenzofuran	T16	AR	0.1	mg/kg	<0.1	<0.1	
2,4-Dinitrotoluene	T16	AR	0.1	mg/kg	<0.1	<0.1	
2,4-Dinitrophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	
2-Nitrophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	
Diethyl phthalate	T16	AR	0.1	mg/kg	<0.1	<0.1	
Fluorene	T16	AR	0.1	mg/kg	<0.1	<0.1	
4-Chlorophenyl phenylether	T16	AR	0.1	mg/kg	<0.1	<0.1	
4-Nitroaniline	T16	AR	0.1	mg/kg	(36) < 0.5	(36) < 0.5	
Azobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	
4-Bromophenyl phenylether	T16	AR	0.1	mg/kg	<0.1	<0.1	
Hexachlorobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	
Pentachlorophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	
Phenanthrene	T16	AR	0.1	mg/kg	0.5	0.5	
Anthracene	T16	AR AR	0.1	mg/kg	0.1 <0.1	<0.1 <0.1	
Carbazole Di p butulahthalata	T16			mg/kg mg/kg			
Di-n-butylphthalate Fluoranthene	T16	AR AR	0.1	mg/kg	<0.1 0.8	<0.1 1.0	
Pyrene	T16	AR	0.1	mg/kg	0.7	0.9	
Butyl benzylphthalate	T16	AR	0.1	mg/kg	<0.1	<0.1	
Benzo(a)Anthracene	T16	AR	0.1	mg/kg	0.4	0.4	
Chrysene	T16	AR	0.1	mg/kg	0.4	0.5	
4-Nitrophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	
Bis (2-ethylhexyl)phthalate	T16	AR	0.1	mg/kg	<0.1	<0.1	
Di-n-octylphthalate	T16	AR	0.1	mg/kg	<0.1	<0.1	
Benzo(b/k)Fluoranthene	T16	AR	0.1	mg/kg	0.5	0.7	
Benzo(a)Pyrene	T16	AR	0.1	mg/kg	0.3	0.4	
Indeno(123-cd)Pyrene	T16	AR	0.1	mg/kg	0.2	0.2	
Dibenzo(ah)Anthracene	T16	AR	0.1	mg/kg	<0.1	<0.1	

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil Semi-Volatile Organic Compounds (USEPA 625)

	Concept Reference 705216 011 705216									
Customer Sample Reference BH4 BH6										
Bottom Depth 0.90 0.90										
	Date Sampled Deviating Deviating									
Determinand	Determinand Method Test Sample LOD Units									
Benzo(ghi)Perylene	T16	AR	0.1	mg/kg	0.2	0.2				

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

United Utilities Total VOC Suite

			Concep	t Reference	705216 011	705216 014
		Custor	ner Sampl	e Reference	BH4	BH6
			В	ottom Depth	0.90	0.90
			Da	ate Sampled	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units		
1,1,1,2-Tetrachloroethane	T54	AR	0.005	mg/kg	<0.005	⁽¹¹⁰⁾ <0.010
1,1,1-Trichloroethane	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
1,1,2,2-Tetrachloroethane	T54	AR	0.005	mg/kg	<0.005	⁽¹¹⁰⁾ <0.010
1,1,2-Trichloroethane	T54	AR	0.005	mg/kg	<0.005	⁽¹¹⁰⁾ <0.010
1,1,2-Trichloroethylene	T54	AR	0.005	mg/kg	0.019	(110) < 0.010
1,1-Dichloroethane	T54	AR	0.005	mg/kg	<0.005	(110) <0.010
1,1-Dichloroethylene	T54	AR	0.005	mg/kg	<0.005	(110) <0.010
1,1-Dichloropropene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
1,2,3-Trichloropropane	T54	AR	0.005	mg/kg	<0.005	(110) <0.010
1,2,4-Trimethylbenzene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
1,2-dibromoethane	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
1,2-Dichlorobenzene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
1,2-Dichloroethane	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
1,2-Dichloropropane	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
1,3,5-Trimethylbenzene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
1,3-Dichlorobenzene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
1,3-Dichloropropane	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
1,4-Dichlorobenzene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
2,2-Dichloropropane	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
2-Chlorotoluene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
4-Chlorotoluene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Bromobenzene	T54	AR	0.005	mg/kg	<0.005	(110) <0.010 (110) <0.010
Bromochloromethane	T54	AR	0.005	mg/kg	<0.005	(110) <0.010 (110) <0.010
Bromodichloromethane Bromoform	T54 T54	AR AR	0.005	mg/kg mg/kg	<0.005 (13) 0.005	(110,13) <0.010
Bromomethane	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Carbon tetrachloride	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Chlorobenzene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Chlorodibromomethane	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Chloroethane	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Chloroform	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Chloromethane	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Cis-1,2-Dichloroethylene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Cis-1,3-Dichloropropene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Dibromomethane	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Dichlorodifluoromethane	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Isopropyl benzene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Methylene Chloride	T54	AR	0.010	mg/kg	(13) < 0.010	(110,13) <0.020
n-Propylbenzene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
Naphthalene	T54	AR	0.050	mg/kg	<0.050	(110) < 0.10
p-Isopropyltoluene	T54	AR	0.005	mg/kg	<0.005	(110) < 0.010
S-Butylbenzene	T54	AR	0.005	mg/kg	<0.005	⁽¹¹⁰⁾ <0.010
Styrene	T54	AR	0.005	mg/kg	<0.005	⁽¹¹⁰⁾ <0.010
T-Butylbenzene	T54	AR	0.005	mg/kg	<0.005	⁽¹¹⁰⁾ <0.010
Tetrachloroethene	T54	AR	0.005	mg/kg	<0.005	⁽¹¹⁰⁾ <0.010
Trans-1,2-Dichloroethene	T54	AR	0.005	mg/kg	<0.005	⁽¹¹⁰⁾ <0.010
Trans-1,3-Dichloropropene	T54	AR	0.005	mg/kg	<0.005	⁽¹¹⁰⁾ <0.010
Trichlorofluoromethane	T54	AR	0.005	mg/kg	<0.005	⁽¹¹⁰⁾ <0.010
Vinyl chloride	T54	AR	0.005	mg/kg	<0.005	⁽¹¹⁰⁾ <0.010
VOC(Total)	T85	AR	0.005	mg/kg	<0.005	<0.005

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

Miscellaneous

			Concep	t Reference	705216 001	6 001 705216 002 705216		705216 004	705216 005			
	BH1	BH1	BH1	BH2	BH2							
	ottom Depth	0.30	1.00	2.00	0.30	1.20						
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating				
Determinand	Method	Test Sample	LOD	Units								
SO4(2:1)	T6	AR	0.1	g/l	<0.1	<0.1	<0.1	<0.1	<0.1			
PCB (Total Tri-Hepta)	T1	AR	0.00005	ma/ka	-	-	-	<0.00005	_			

Concept Reference: 705216

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

Miscellaneous

			Concep	t Reference	705216 006	705216 007	705216 008	705216 009	705216 010
		Custon	ner Sampl	e Reference	BH2	ВН3	ВН3	BH3	BH4
			В	3.20	0.30	0.90	1.50	0.20	
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units					
SO4(2:1)	T6	AR	0.1	g/I	<0.1	<0.1	<0.1	<0.1	<0.1

Concept Reference: 705216

Project Site: New Wellington st Blackburn

Customer Reference:

Soil Analysed as Soil

Miscellaneous

		- 17	Concep	t Reference	705216 012	705216 013	705216 015	705216 016	705216 017
		Custon	ner Sampl	e Reference	BH5	BH6	BH7	BH8	
			В	0.30	0.40 0.30		0.40	0.20	
	Deviating	Deviating	Deviating	Deviating	Deviating				
Determinand	Method	Test Sample	LOD	Units				§-4000	
SO4(2:1)	T6	AR	0.1	g/l	<0.1	<0.1		<0.1	<0.1
PCB (Total Tri-Hepta)	T1	AR	0.00005	mg/kg	⁽⁹⁾ <0.00050	- 10	⁽⁹⁾ <0.00050	-	-

Index to symbols used in 705216-1

Value	Description
A40	Assisted dried < 40C
AR	As Received
M105	Analysis conducted on an "as received" aliquot. Results are reported on a dry weight basis where moisture content was determined by assisted drying of sample at 105C
N.D.	Not Detected
9	LOD raised due to dilution of sample
13	Results have been blank corrected.
110	LOD raised due to low internal standard recovery.
100	LOD determined by sample aliquot used for analysis
36	LOD Raised due to low Matrix spike recovery
S	Analysis was subcontracted
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised

Asbestos was subcontracted to REC Asbestos.

Method Index

Value	Description
T16	GC/MS
T149	GC/MS (SIR)
T8	GC/FID
T54	GC/MS (Headspace)
T85	Calc
T4	Colorimetry
T287	Calc TOC/0.58
T1	GC/MS (HR)
T2	Grav
T6	ICP/OES
T21	OX/IR
T27	PLM
T7	Probe

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Asbestos	T27	AR			SU	001,004,007,010,012-013,016-017
Arsenic	T6	A40	1	mg/kg	U	001,004,007,010,012-013,016-017
Cadmium	T6	A40	1	mg/kg	U	001,004,007,010,012-013,016-017
Chromium	T6	A40	1	mg/kg	U	001,004,007,010,012-013,016-017
Chromium VI	T6	AR	1	mg/kg	N	001,004,007,010,012-013,016-017
Copper	T6	A40	1	mg/kg	U	001,004,007,010,012-013,016-017
Cyanide(Total)	T4	AR	1	mg/kg	U	001,004,007,010,012-013,016-017
Cyanide(free)	T4	AR	1	mg/kg	U	001,004,007,010,012-013,016-017
Lead	T6	A40	1	mg/kg	U	001,004,007,010,012-013,016-017
Mercury	T6	A40	1	mg/kg	U	001,004,007,010,012-013,016-017
Nickel	T6	A40	1	mg/kg	U	001,004,007,010,012-013,016-017
На	T7	A40		0 0	U	001,004,007,010,012-013,016-017
Phenols(Mono)	T4	AR	1	mg/kg	U	001,004,007,010,012-013,016-017
Selenium	Т6	A40	3	mg/kg	U	001,004,007,010,012-013,016-017
Soil Organic Matter	T287	A40	0.1	%	N	001,004,007,010,012-013,016-017
SO4(Total)	T6	A40	0.01	%	N	001,004,007,010,012-013,016-017
SO4(2:1)	Т6	AR	0.1	g/l	N	001-010,012-013,016-017
Sulphide	T4	AR	10	mg/kg	N	001,004,007,010,012-013,016-017
Sulphur(Free)	T2	AR	500	mg/kg	N	001,004,007,010,012-013,016-017
Thiocyanate	T4	A40	10	mg/kg	N	001,004,007,010,012-013,016-017
Total Organic Carbon	T21	A40	0.1	%	N	001,004,007,010,012-013,016-017
Zinc	T6	A40	1	mg/kg	U	001,004,007,010,012-013,016-017
Total BTEX & MTBE	T85	AR	0.001	mg/kg	U	011,014
Benzene	T54	AR	0.001	mg/kg	U	001,003-004,007,010-014,016-018
Toluene	T54	AR	0.001	mg/kg	U	001,003-004,007,010-014,016-018
EthylBenzene	T54	AR	0.001	mg/kg	U	001,003-004,007,010-014,016-018
M/P Xylene	T54	AR	0.001	mg/kg	U	001,003-004,007,010-014,016-018
O Xylene	T54	AR	0.001	mg/kg	U	001,003-004,007,010-014,016-018
Methyl tert-Butyl Ether	T54	AR	0.001	mg/kg	U	001,003-004,007,010-014,016-018
TPH (C5-C6 aliphatic)	T54	AR	0.010	mg/kg	N	001,003-004,007,010-014,016-018
TPH (C6-C8 aliphatic)	T54	AR	0.00001	g/kg	N	001,003-004,007,010-014,016-018
TPH (C8-C10 aliphatic)	T54	AR	0.010	mg/kg	N	001,003-004,007,010-014,016-018
TPH (C10-C12 aliphatic)	T8	M105	1	mg/kg	N	001,003-004,007,010-014,016-018
TPH (C12-C16 aliphatic)	T8	M105	1	mg/kg	N	001,003-004,007,010-014,016-018
TPH (C16-C21 aliphatic)	T8	M105	1	mg/kg	N	001,003-004,007,010-014,016-018
TPH (C21-C35 aliphatic)	T8	M105	1	mg/kg	N	001,003-004,007,010-014,016-018
TPH (Aliphatic) total	T85	M105		mg/kg	N	001,003-004,007,010,012-013,016-018
TPH (C6-C7 aromatic)	T54	AR	0.010	mg/kg	N	001,003-004,007,010-014,016-018
TPH (C7-C8 aromatic)	T54	AR	0.010	mg/kg	N	001,003-004,007,010-014,016-018
TPH (C8-C10 aromatic)	T54	AR	0.010	mg/kg	N	001,003-004,007,010-014,016-018
TPH (C10-C12 aromatic)	T8	M105	1	mg/kg	N	001,003-004,007,010-014,016-018
TPH (C12-C16 aromatic)	T8	M105	1	mg/kg	N	001,003-004,007,010-014,016-018
TPH (C16-C21 aromatic)	T8	M105	1	mg/kg	N	001,003-004,007,010-014,016-018
TPH (C21-C35 aromatic)	T8	M105	1	mg/kg	N	001,003-004,007,010-014,016-018
TPH (Aromatic) total	T85	M105		mg/kg	N	001,003-004,007,010-014,016-018
TPH (Aliphatic+Aromatic) (sum)	T85	M105		mg/kg	N	001,003-004,007,010,012-013,016-018
Total Petroleum Hydrocarbons (C5 - C10 aliphatic/aromatic)	T85	AR	0.010	mg/kg	N	011,014
Total Petroleum Hydrocarbons (C10-C16 aliphatic/aromatic)	T85	M105	1		N	011,014
Total Fetroleum Hydrocarbons (CTO-CTo aliphatic/aromatic)	160	IVI TUD		mg/kg	IN	U11,014

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
TPH (C35-C40 aliphatic)	T8	M105	1	mg/kg	N	011,014
TPH (C35-C40 aromatic)	T8	M105	1	mg/kg	N	011,014
Total Petroleum Hydrocarbons (C16-C40 aliphatic/aromatic)	T85	M105	1	mg/kg	N 	011,014
Acenaphthylene Acenaphthene	T149 T149	AR AR	0.01	mg/kg mg/kg	U	001,003-004,007,010,012-013,016-018 001,003-004,007,010,012-013,016-018
Anthracene	T149	AR	0.01	mg/kg	U	001,003-004,007,010,012-013,010-018
Benzo(a)Anthracene	T149	AR	0.01	mg/kg	U	001,003-004,007,010,012-013,016-018
Benzo(a)Pyrene	T149	AR	0.01	mg/kg	U	001,003-004,007,010,012-013,016-018
Benzo(b/k)Fluoranthene	T149	AR	0.01	mg/kg	U	001,004,007,010,012-013,016-017
Benzo(b)fluoranthene	T149	AR	0.01	mg/kg	U	001,003-004,007,010,012-013,016-018
Benzo(ghi)Perylene	T149	AR	0.01	mg/kg	U	001,003-004,007,010,012-013,016-018
Benzo(k)fluoranthene	T149	AR	0.01	mg/kg	U	001,003-004,007,010,012-013,016-018
Chrysene	T149	AR	0.01	mg/kg	U	001,003-004,007,010,012-013,016-018
Dibenzo(ah)Anthracene	T149	AR	0.01	mg/kg	U	001,003-004,007,010,012-013,016-018
Fluoranthene	T149	AR	0.01	mg/kg	U	001,003-004,007,010,012-013,016-018
Fluorene	T149	AR	0.01	mg/kg	U	001,003-004,007,010,012-013,016-018
Indeno(123-cd)Pyrene	T149	AR	0.01	mg/kg	U	001,003-004,007,010,012-013,016-018
Naphthalene	T149	AR	0.01	mg/kg	U	001,003-004,007,010,012-013,016-018
Phenanthrene	T149	AR	0.01	mg/kg	U	001,003-004,007,010,012-013,016-018
Pyrene PAH(total)	T149 T149	AR AR	0.01	mg/kg mg/kg	U	001,003-004,007,010,012-013,016-018 001,003-004,007,010,012-013,016-018
Cresols and Chlorinated Phenols (Total)	T85	AR	0.01	mg/kg mg/kg	N	011,014
SVOC screen	T16	AR	0.10	mg/kg	N	011,014
Tertiary amyl methyl ether	T54	AR	0.005	mg/kg	U	011,014
Total SVOC (exc PAH & Specific Phenols)	T85	AR	0.1	mg/kg	U	011,014
VOC Screen (Extra Peaks)	T54	AR	0.10	mg/kg	N	011,014
Phenol	T16	AR	0.1	mg/kg	U	011,014
Bis (2-chloroethyl) ether	T16	AR	0.1	mg/kg	U	011,014
2-Chlorophenol	T16	AR	0.1	mg/kg	U	011,014
1,3-Dichlorobenzene	T16	AR	0.1	mg/kg	U	011,014
1,4-Dichlorobenzene	T16	AR	0.1	mg/kg	U	011,014
1,2-Dichlorobenzene	T16	AR	0.1	mg/kg	U	011,014
Bis (2-chloroisopropyl) ether	T16	AR	0.1	mg/kg	U	011,014
2-methyl phenol	T16	AR	0.1	mg/kg	U	011,014
3/4-Methylphenol	T16	AR	0.1	mg/kg	U	011,014
Hexachloroethane	T16	AR	0.1	mg/kg	U	011,014
Nitrobenzene	T16	AR	0.1	mg/kg	U	011,014
Isophorone 2.4 Dimethylphonol	T16	AR	0.1	mg/kg	U	011,014
2,4-Dimethylphenol Bis (2-chloroethoxy) methane	T16	AR AR	0.1	mg/kg	U	011,014 011,014
2,4-Dichlorophenol	T16	AR	0.1	mg/kg mg/kg	U	011,014
1.2.4-Trichlorobenzene	T16	AR	0.1	mg/kg	U	011,014
Naphthalene	T16	AR	0.1	mg/kg	U	011,014
4-Chloroaniline	T16	AR	0.1	mg/kg	U	011,014
Hexachlorobutadiene	T16	AR	0.1	mg/kg	U	011,014
4-Chloro-3-methylphenol	T16	AR	0.1	mg/kg	U	011,014
2-Methylnaphthalene	T16	AR	0.1	mg/kg	U	011,014
Hexachlorocyclopentadiene	T16	AR	0.1	mg/kg	U	011,014
2,4,6-Trichlorophenol	T16	AR	0.1	mg/kg	U	011,014
2,4,5-Trichlorophenol	T16	AR	0.1	mg/kg	U	011,014
2-Chloronaphthalene	T16	AR	0.1	mg/kg	U	011,014
2-Nitroaniline	T16	AR	0.1	mg/kg	U	011,014
Dimethyl phthalate	T16	AR	0.1	mg/kg	U	011,014
2,6-Dinitrotoluene	T16	AR	0.1	mg/kg	U	011,014
Accepabitions	T16	AR	0.1	mg/kg	U	011,014
Acenaphthene 3-Nitroaniline	T16	AR AR	0.1	mg/kg	U	011,014 011,014
3-Nitroaniline Dibenzofuran	T16	AR	0.1	mg/kg mg/kg	U	011,014
2,4-Dinitrophenol	T16	AR	0.1	mg/kg	N	011,014
2,4-Dinitrophenoi	T16	AR	0.1	mg/kg	U	011,014
2-Nitrophenol	T16	AR	0.1	mg/kg	U	011,014
Diethyl phthalate	T16	AR	0.1	mg/kg	U	011,014
Fluorene	T16	AR	0.1	mg/kg	U	011,014
4-Chlorophenyl phenylether	T16	AR	0.1	mg/kg	U	011,014
4-Nitroaniline	T16	AR	0.1	mg/kg	U	011,014
Azobenzene	T16	AR	0.1	mg/kg	U	011,014
4-Bromophenyl phenylether	T16	AR	0.1	mg/kg	U	011,014
Hexachlorobenzene	T16	AR	0.1	mg/kg	U	011,014
Pentachlorophenol	T16	AR	0.1	mg/kg	U	011,014
Phenanthrene	T16	AR	0.1	mg/kg	U	011,014

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Anthracene	T16	AR	0.1	mg/kg	U	011,014
Carbazole	T16	AR	0.1	mg/kg	U	011,014
Di-n-butylphthalate	T16	AR	0.1	mg/kg	U	011,014
Fluoranthene	T16	AR	0.1	mg/kg	U	011,014
Pyrene	T16	AR	0.1	mg/kg	U	011,014
Butyl benzylphthalate	T16	AR	0.1	mg/kg	U	011,014
Benzo(a)Anthracene	T16	AR	0.1	mg/kg	U	011,014
4-Nitrophenol Chrysene	T16	AR AR	0.1	mg/kg mg/kg	N U	011,014 011,014
Bis (2-ethylhexyl)phthalate	T16	AR	0.1	mg/kg	U	011,014
Di-n-octylphthalate	T16	AR	0.1	mg/kg	U	011,014
Benzo(b/k)Fluoranthene	T16	AR	0.1	mg/kg	U	011,014
Benzo(a)Pyrene	T16	AR	0.1	mg/kg	U	011,014
Indeno(123-cd)Pyrene	T16	AR	0.1	mg/kg	U	011,014
Dibenzo(ah)Anthracene	T16	AR	0.1	mg/kg	U	011,014
Benzo(ghi)Perylene	T16	AR	0.1	mg/kg	U	011,014
1,1,1,2-Tetrachloroethane	T54	AR	0.005	mg/kg	U	011,014
1,1,1-Trichloroethane	T54	AR	0.005	mg/kg	U	011,014
1,1,2,2-Tetrachloroethane	T54	AR	0.005	mg/kg	U	011,014
1,1,2-Trichloroethane 1,1,2-Trichloroethylene	T54 T54	AR AR	0.005	mg/kg mg/kg	U	011,014 011,014
1,1-Dichloroethane	T54	AR	0.005	mg/kg	U	011,014
1,1-Dichloroethylene	T54	AR	0.005	mg/kg	U	011,014
1,1-Dichloropropene	T54	AR	0.005	mg/kg	U	011,014
1,2,3-Trichloropropane	T54	AR	0.005	mg/kg	U	011,014
1,2,4-Trimethylbenzene	T54	AR	0.005	mg/kg	U	011,014
1,2-dibromoethane	T54	AR	0.005	mg/kg	U	011,014
1,2-Dichlorobenzene	T54	AR	0.005	mg/kg	U	011,014
1,2-Dichloroethane	T54	AR	0.005	mg/kg	U	011,014
1,2-Dichloropropane	T54	AR	0.005	mg/kg	U	011,014
1,3,5-Trimethylbenzene	T54	AR	0.005	mg/kg	U	011,014
1,3-Dichlorobenzene	T54	AR	0.005	mg/kg	U	011,014
1,3-Dichloropropane	T54	AR	0.005	mg/kg	U	011,014
1,4-Dichlorobenzene 2,2-Dichloropropane	T54 T54	AR AR	0.005	mg/kg	U	011,014 011,014
2-Chlorotoluene	T54	AR	0.005	mg/kg mg/kg	U	011,014
4-Chlorotoluene	T54	AR	0.005	mg/kg	U	011,014
Bromobenzene	T54	AR	0.005	mg/kg	U	011,014
Bromochloromethane	T54	AR	0.005	mg/kg	U	011,014
Bromodichloromethane	T54	AR	0.005	mg/kg	U	011,014
Bromoform	T54	AR	0.005	mg/kg	U	011,014
Bromomethane	T54	AR	0.005	mg/kg	U	011,014
Carbon tetrachloride	T54	AR	0.005	mg/kg	U	011,014
Chlorobenzene	T54	AR	0.005	mg/kg	U	011,014
Chlorodibromomethane	T54	AR	0.005	mg/kg	U	011,014 011,014
Chloroethane Chloroform	T54	AR AR	0.005 0.005	mg/kg mg/kg	U	011,014
Chloromethane	T54	AR	0.005	mg/kg	U	011,014
Cis-1,2-Dichloroethylene	T54	AR	0.005	mg/kg	U	011,014
Cis-1,3-Dichloropropene	T54	AR	0.005	mg/kg	U	011,014
Dibromomethane	T54	AR	0.005	mg/kg	U	011,014
Dichlorodifluoromethane	T54	AR	0.005	mg/kg	U	011,014
Isopropyl benzene	T54	AR	0.005	mg/kg	U	011,014
Methylene Chloride	T54	AR	0.010	mg/kg	U	011,014
n-Propylbenzene	T54	AR	0.005	mg/kg	U	011,014
Naphthalene	T54	AR	0.050	mg/kg	U	011,014
p-Isopropyltoluene	T54	AR	0.005	mg/kg	U	011,014
S-Butylbenzene	T54	AR	0.005	mg/kg	U	011,014
Styrene T-Butylbenzene	T54	AR AR	0.005	mg/kg mg/kg	U	011,014 011,014
Tetrachloroethene	T54	AR	0.005	mg/kg	U	011,014
Trans-1,2-Dichloroethene	T54	AR	0.005	mg/kg	U	011,014
Trans-1,3-Dichloropropene	T54	AR	0.005	mg/kg	U	011,014
Trichlorofluoromethane	T54	AR	0.005	mg/kg	U	011,014
Vinyl chloride	T54	AR	0.005	mg/kg	U	011,014
VOC(Total)	T85	AR	0.005	mg/kg	U	011,014
PCB (Total Tri-Hepta)	T1	AR	0.00005	mg/kg	U	004,012,015

HERON FOODS, NEW WELLINGTON STREET, BLACKBURN, BB2 4PJ

Comparison of Contamination Test Results with Various Thresholds COMMERCIAL

Hydrocarbons at 1% SOM

Contaminant	Max Value	Threshold	Pass/ Fail	SSAC	Pass/ Fail	Failed Samples
			HEAVY I	METALS		
- Arsenic	130	640*	V			
- Cadmium	2	190*	√			
- Chromium III	240	8600*	√			
- Chromium VI	<1	33*	√			
- Copper	470	68000*	√			
- Lead	950	1100 - 6000 ▲	√			
- Inorganic Mercury	2	1100*	√			
- Methyl Mercury	2	320*	√			
- Nickel	98	980*	√			
- Selenium	<3	13000#	√			
- Zinc	680	73000*	√			
- Asbestos	YES		OTHER INC	DRGANICS		BH3 – 0.3m, BH5 – 0.3m, BH6 – 0.3m
- Cyanide (total)	<1	20 (D)	V			0.3111
- pH range	8.1 – 10.2	20 (D)	V			
- Sulphate (g/l)	<0.1	0.5 (B)	Ž		+	
- Sulphide	14	250 (E)	Ž			
- Thiocyanate	<10	(_)	Ż		1	
-TOC range (%)	0.5 – 15		Ż		†	
-SOM Range	0.9 - 26		Ż			

All units mg/kg (parts per million/ppm) unless shown otherwise

Metals & inorganic values derived using 6% SOM (soil organic mater)

Sources

- * LQM/CIEH "copyright" Land Quality Management Limited reproduced with permission, publication number S4UL3308. All rights reserved
- (D) Dutch (B) BRE Building Research Establishment (E) EA Disposal Threshold 2002
- ® CLEA 1.06 Software

SSAC – Site Specific Assessment Criteria (derived with CLEA 1.06 software)

HERON FOODS, NEW WELLINGTON STREET, BLACKBURN, BB2 4PJ

Comparison of Contamination Test Results with Various Thresholds COMMERCIAL

Hydrocarbons at 1% SOM

Contaminant	Max Value	Threshold	Pass/ Fail	SSAC	Pass/ Fail	Failed Samples				
			PAHs							
- Acenapthene	4.3	8400 (57 sol)*	√							
- Acenapthylene	0.10	8300 (86.1 sol)*	√							
- Anthracene	6.6	520000*	V							
- Benz(a)anthracene	7.0	170*	$\sqrt{}$							
- Benzo(a)pyrene (BAP)*	6.0	35*	$\sqrt{}$							
- Benzo(b)fluoranthene	4.8	44*	$\sqrt{}$							
- Benzo(ghi)perylene	3.9	3900*	$\sqrt{}$							
- Benzo(k)fluoranthene	4.0	1200*	V							
- Chrysene	6.6	350*	V							
- Dibenz(ah)anthracene (DBA)	1.3	3.5*	$\sqrt{}$							
- Fluoranthene	15	23000*	$\sqrt{}$							
- Fluorene	4.3	63000 (30.9 sol)*	√							
- Indene (123-cd) pyrene	3.1	500*	√							
- Naphthalene	3.9	190 (76.4 sol)*	√							
- Phenanthrene	21	22000*	√							
- Pyrene	14	54000*	V							
OTHER COMPOUNDS										
Phenols	<1	760*	V							
PID (VOC screen) ppm	0.0		V							
MTBE	<0.002		V							

All units mg/kg (parts per million/ppm) unless shown otherwise

Hydrocarbon values derived using 1% SOM

BAP is a marker for genotoxic PAHs

Sources

- Soil Guideline Values ▲ - C4SL

(D) – Dutch (B) - BRE – Building Research Establishment (E) - EA Disposal Threshold 2002

® - CLEA 1.06 Software

SSAC – Site Specific Assessment Criteria (derived with CLEA 1.06 software)

^{* -} LQM/CIEH "copyright" Land Quality Management Limited reproduced with permission, publication number S4UL3308. All rights reserved

HERON FOODS, NEW WELLINGTON STREET, BLACKBURN, BB2 4PJ

Comparison of Contamination Test Results with Various Thresholds COMMERCIAL

Hydrocarbons at 1% SOM

Contaminant	Max Value	Threshold	Pass/ Fail	SSAC	Pass/ Fail	Failed Samples
			BTEX COM	1POUNDS		
- Benzene	0.008	27*	V			
- Toluene	0.014	56000*	√			
- Ethyl-benzene	0.019	5700*	√			
- Xylene - O	0.012	6600*	√			
- M/P	0.026	5900*	√			
	·	,	TP	Hs		
<u>Aliphatics</u>						
$C_5 - C_6$	<0.02	3200 (304 sol)*	V			
$C_6 - C_8$	<0.02	7800 (144 sol)*	V			
$C_8 - C_{10}$	<0.02	2000 (78 sol)*	V			
$C_{10} - C_{12}$	<10	9700 (48 sol)*	√			
$C_{12} - C_{16}$	<10	59000 (24 sol)*	V			
$C_{16} - C_{35}$	740	1600000*	√			
<u>Aromatics</u>						
$C_5 - C_7$	<0.02	26000 (1220 sol)*	V			
$C_7 - C_8$	0.014	56000 (869 vap)*	√			
$C_8 - C_{10}$	0.12	3500 (613 vap)*	V			
$C_{10} - C_{12}$	<10	16000 (364 sol)*	V			
$C_{12} - C_{16}$	64	36000 (169 sol)*	V			
$C_{16} - C_{21}$	150	28000*	V	·		
$C_{21} - C_{35}$	300	28000*	√			
TPH Sum	400	1,000 (H)	$\sqrt{}$			

All units mg/kg (parts per million/ppm) unless shown otherwise

Hydrocarbon values derived using 1% SOM

Vap – vapour saturation limit Soil – solubility saturation limit

Sources

- * LQM/CIEH "copyright" Land Quality Management Limited reproduced with permission, publication number S4UL3308. All rights reserved
- (D) Dutch (B) BRE Building Research Establishment (E) EA Disposal Threshold 2002
- (H) Hazardous Waste
- ® CLEA 1.06 Software

SSAC – Site Specific Assessment Criteria (derived with CLEA 1.06 software)

LANDFILL GAS TESTING RESULTS

HERON FOODS, NEW WELLINGTON STREET, BLACKBURN. BB2 4PJ

Barometric				Methane	Oxygen O ₂ (%)	Carbon CO ₂	Carbon Dioxide CO ₂ (%)				Comments		
Date	Pressure (mb)	Temp.	Weather	ВН	CH ₄ (%)	O ₂ (%)	Peak	Steady State	from BH (l/hr)	PID (ppm)	Depth to water (m)		
	, ,				0	20.9	0	0	0			Fresh air	
					1.0 *		5.0 *		70 🌣			Threshold values	
21.12.17	1022	10	Rain	BH1	0.0	11.7	1.0	1.0	0.0	-			
				BH2	0.0	21.3	0.0	0.0	0.0	-	1.3		
				BH3	0.0	14.8	2.4	2.4	0.0	-	1.0		
03.01.17	985	6	Rain	BH1	0.0	21.1	0.3	0.3	0.0	-	1.85		
				BH2	0.0	21.4	0.0	0.0	0.0	-	1.20		
				BH3	0.0	21.0	0.1	0.1	0.0	-	0.85		
		_			_	_	_						
		_			_	_	_						

Testing machines: Geotechnical Instruments Geotech 2000 (GA 12824/10)

Outflow - 0 taken as < 0.1litres/hour flow of gas from borehole

- * NHBC green limit, CIRIA situation 1 limit
- ❖ CIRIA situation 2 limit

site is a former church, housing site and engineers

significantl contaminants: found - asbestos

low risk to end-users expected, based on commercial end-use

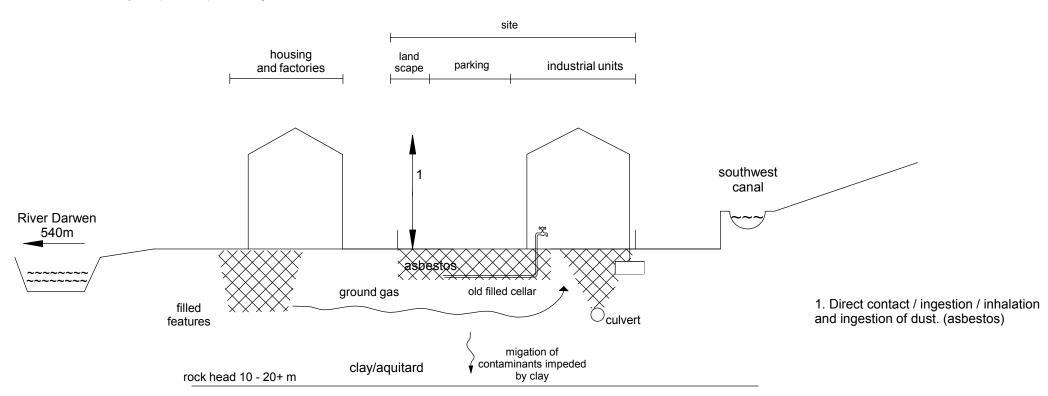
low risk to controlled water expected

low gas to date

radon protection not needed

coal seams sufficiently deep to not pose a significant risk

Heron Foods, New Wellington Street
Blackburn, BB2 4PJ


Conceptual Model based on Intrusive

Not to scale 13.11.2017

WORMS EYE

52 Bank Parade
Burnley, BB11 1TS

01282 414 649

mudstone (secondary A aquifer)

no shallow coal seams